論文の概要: LoRD: Adapting Differentiable Driving Policies to Distribution Shifts
- arxiv url: http://arxiv.org/abs/2410.09681v1
- Date: Tue, 15 Oct 2024 17:38:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 08:46:35.263038
- Title: LoRD: Adapting Differentiable Driving Policies to Distribution Shifts
- Title(参考訳): LoRD: 差別化可能なドライビングポリシを分散シフトに適用する
- Authors: Christopher Diehl, Peter Karkus, Shushant Veer, Marco Pavone, Torsten Bertram,
- Abstract要約: 運用領域間の分散シフトは、自動運転車における学習モデルの性能に重大な影響を与える可能性がある。
低ランク残差復号器 (LoRD) とマルチタスクファインチューニング (Multi-task fine-tuning) である。
提案手法は, 通常の微調整に比べて最大23.33%, 閉ループOOD駆動スコア8.83%の誤差を補正する。
- 参考スコア(独自算出の注目度): 13.470846701616642
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Distribution shifts between operational domains can severely affect the performance of learned models in self-driving vehicles (SDVs). While this is a well-established problem, prior work has mostly explored naive solutions such as fine-tuning, focusing on the motion prediction task. In this work, we explore novel adaptation strategies for differentiable autonomy stacks consisting of prediction, planning, and control, perform evaluation in closed-loop, and investigate the often-overlooked issue of catastrophic forgetting. Specifically, we introduce two simple yet effective techniques: a low-rank residual decoder (LoRD) and multi-task fine-tuning. Through experiments across three models conducted on two real-world autonomous driving datasets (nuPlan, exiD), we demonstrate the effectiveness of our methods and highlight a significant performance gap between open-loop and closed-loop evaluation in prior approaches. Our approach improves forgetting by up to 23.33% and the closed-loop OOD driving score by 8.83% in comparison to standard fine-tuning.
- Abstract(参考訳): 運用領域間の分散シフトは、自動運転車(SDV)における学習モデルの性能に重大な影響を与える可能性がある。
これはよく確立された問題であるが、先行研究は主に、運動予測タスクに焦点をあてた微調整などの単純解を探求してきた。
本研究では,予測,計画,制御からなる微分可能な自律スタックに対する新しい適応戦略について検討し,閉ループでの評価を行い,大惨な忘れ込みをしばしば見落としている問題について検討する。
具体的には,低ランク残差復号器 (LoRD) とマルチタスクファインチューニング (Multi-task fine-tuning) の2つの簡単な手法を紹介する。
2つの実世界の自律走行データセット(nuPlan, exiD)で実施した3つのモデルを対象とした実験を通じて,本手法の有効性を実証し,従来手法におけるオープンループとクローズループ評価の大幅な性能ギャップを明らかにする。
提案手法では, 通常の微調整に比べて最大23.33%, 閉ループOOD駆動スコア8.83%の精度向上を実現している。
関連論文リスト
- DiFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Autonomous Driving [55.53171248839489]
我々は、エンドツーエンドの自動運転のためのエゴ中心の完全スパースパラダイムであるDiFSDを提案する。
特に、DiFSDは主にスパース知覚、階層的相互作用、反復的な運動プランナーから構成される。
nuScenesデータセットで行った実験は、DiFSDの優れた計画性能と優れた効率を示す。
論文 参考訳(メタデータ) (2024-09-15T15:55:24Z) - Optimization of Autonomous Driving Image Detection Based on RFAConv and Triplet Attention [1.345669927504424]
本稿では, YOLOv8モデルの拡張のための総合的アプローチを提案する。
C2f_RFAConvモジュールは、機能の抽出効率を高めるために元のモジュールを置き換える。
Triplet Attentionメカニズムは、ターゲット検出の強化のための特徴焦点を強化する。
論文 参考訳(メタデータ) (2024-06-25T08:59:33Z) - A Tricycle Model to Accurately Control an Autonomous Racecar with Locked
Differential [71.53284767149685]
自動オープンホイールレースカーの側面力学に対するロックディファレンシャルの影響をモデル化するための新しい定式化を提案する。
本稿では,マイクロステップの離散化手法を用いて,動的に線形化し,実時間実装に適した予測を行う。
論文 参考訳(メタデータ) (2023-12-22T16:29:55Z) - Deep Reinforcement Learning for Autonomous Vehicle Intersection
Navigation [0.24578723416255746]
強化学習アルゴリズムは、これらの課題に対処するための有望なアプローチとして登場した。
そこで本研究では,低コスト単一エージェントアプローチを用いて,T断面積を効率よく安全にナビゲートする問題に対処する。
提案手法により,AVはT断面積を効果的にナビゲートし,走行遅延,衝突最小化,総コストの面で従来の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2023-09-30T10:54:02Z) - iPLAN: Intent-Aware Planning in Heterogeneous Traffic via Distributed
Multi-Agent Reinforcement Learning [57.24340061741223]
本稿では,高密度および不均一な交通シナリオにおける軌跡や意図を予測できる分散マルチエージェント強化学習(MARL)アルゴリズムを提案する。
インテント対応プランニングのアプローチであるiPLANにより、エージェントは近くのドライバーの意図をローカルな観察からのみ推測できる。
論文 参考訳(メタデータ) (2023-06-09T20:12:02Z) - Rethinking the Open-Loop Evaluation of End-to-End Autonomous Driving in
nuScenes [38.43491956142818]
計画課題は、内部意図と外部環境の両方からの入力に基づいて、エゴ車両の軌道を予測することである。
既存の研究の多くは、予測された軌道と地上の真実との衝突率とL2誤差を用いて、nuScenesデータセット上での性能を評価する。
本稿では,これらの既存の評価指標を再評価し,異なる手法の優越性を正確に測定するかどうかを検討する。
我々の単純な手法は、nuScenesデータセットと他の知覚に基づく手法と同じようなエンド・ツー・エンドの計画性能を実現し、平均L2誤差を約20%削減する。
論文 参考訳(メタデータ) (2023-05-17T17:59:11Z) - Robust Trajectory Prediction against Adversarial Attacks [84.10405251683713]
ディープニューラルネットワーク(DNN)を用いた軌道予測は、自律運転システムにおいて不可欠な要素である。
これらの手法は敵の攻撃に対して脆弱であり、衝突などの重大な結果をもたらす。
本研究では,敵対的攻撃に対する軌道予測モデルを保護するための2つの重要な要素を同定する。
論文 参考訳(メタデータ) (2022-07-29T22:35:05Z) - TAE: A Semi-supervised Controllable Behavior-aware Trajectory Generator
and Predictor [3.6955256596550137]
軌道生成と予測は、知的車両のプランナー評価と意思決定において重要な役割を果たす。
本稿では,ドライバの動作を明示的にモデル化する行動認識型トラジェクトリ・オートエンコーダ(TAE)を提案する。
我々のモデルは、統一アーキテクチャにおける軌道生成と予測に対処し、両方のタスクに利益をもたらす。
論文 参考訳(メタデータ) (2022-03-02T17:37:44Z) - Early Lane Change Prediction for Automated Driving Systems Using
Multi-Task Attention-based Convolutional Neural Networks [8.60064151720158]
レーンチェンジ(英: Lane Change、LC)は、高速道路の運転において、安全上重要な手段の一つである。
自動走行システムの 安全で快適な運転には 確実な予測が不可欠だ
本稿では,LCの操作可能性と時間-車線変化を同時に推定する新しいマルチタスクモデルを提案する。
論文 参考訳(メタデータ) (2021-09-22T13:59:27Z) - Divide-and-Conquer for Lane-Aware Diverse Trajectory Prediction [71.97877759413272]
軌道予測は、自動運転車が行動を計画し実行するための安全クリティカルなツールです。
近年の手法は,WTAやベスト・オブ・マニーといったマルチコース学習の目標を用いて,強力なパフォーマンスを実現している。
我々の研究は、軌道予測、学習出力、そして運転知識を使って制約を課すことによるより良い予測における2つの重要な課題に対処する。
論文 参考訳(メタデータ) (2021-04-16T17:58:56Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
道路にはよく定義された地形、地形、交通規則がある。
本稿では,構造的事前を損失関数として組み込むことを提案する。
実世界の自動運転データセットにおけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2020-06-04T03:56:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。