EMWaveNet: Physically Explainable Neural Network Based on Microwave Propagation for SAR Target Recognition
- URL: http://arxiv.org/abs/2410.09749v1
- Date: Sun, 13 Oct 2024 07:04:49 GMT
- Title: EMWaveNet: Physically Explainable Neural Network Based on Microwave Propagation for SAR Target Recognition
- Authors: Zhuoxuan Li, Xu Zhang, Shumeng Yu, Haipeng Wang,
- Abstract summary: This study proposes a physically explainable framework for complex-valued SAR image recognition.
The network architecture is fully parameterized, with all learnable parameters with clear physical meanings, and the computational process is completed entirely in the frequency domain.
The results demonstrate that the proposed method possesses a strong physical decision logic, high physical explainability and robustness, as well as excellent dealiasing capabilities.
- Score: 4.251056028888424
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning technologies have achieved significant performance improvements in the field of synthetic aperture radar (SAR) image target recognition over traditional methods. However, the inherent "black box" property of deep learning models leads to a lack of transparency in decision-making processes, making them difficult to be convincingly applied in practice. This is especially true in SAR applications, where the credibility and reliability of model predictions are crucial. The complexity and insufficient explainability of deep networks have become a bottleneck for their application. To tackle this issue, this study proposes a physically explainable framework for complex-valued SAR image recognition, designed based on the physical process of microwave propagation. This framework utilizes complex-valued SAR data to explore the amplitude and phase information and its intrinsic physical properties. The network architecture is fully parameterized, with all learnable parameters endowed with clear physical meanings, and the computational process is completed entirely in the frequency domain. Experiments on both the complex-valued MSTAR dataset and a self-built Qilu-1 complex-valued dataset were conducted to validate the effectiveness of framework. In conditions of target overlap, our model discerns categories others find challenging. Against 0dB forest background noise, it boasts a 20% accuracy improvement over traditional neural networks. When targets are 60% masked by noise, it still outperforms other models by 9%. An end-to-end complex-valued synthetic aperture radar automatic target recognition (SAR-ATR) system has also been constructed to perform recognition tasks in interference SAR scenarios. The results demonstrate that the proposed method possesses a strong physical decision logic, high physical explainability and robustness, as well as excellent dealiasing capabilities.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - IncSAR: A Dual Fusion Incremental Learning Framework for SAR Target Recognition [7.9330990800767385]
Models' tendency to forget old knowledge when learning new tasks, known as catastrophic forgetting, remains an open challenge.
In this paper, an incremental learning framework, called IncSAR, is proposed to mitigate catastrophic forgetting in SAR target recognition.
IncSAR comprises a Vision Transformer (ViT) and a custom-designed Convolutional Neural Network (CNN) in individual branches combined through a late-fusion strategy.
arXiv Detail & Related papers (2024-10-08T08:49:47Z) - Towards SAR Automatic Target Recognition MultiCategory SAR Image Classification Based on Light Weight Vision Transformer [11.983317593939688]
This paper tries to apply a lightweight vision transformer based model to classify SAR images.
The entire structure was verified by an open-accessed SAR data set.
arXiv Detail & Related papers (2024-05-18T11:24:52Z) - Efficient and Accurate Hyperspectral Image Demosaicing with Neural Network Architectures [3.386560551295746]
This study investigates the effectiveness of neural network architectures in hyperspectral image demosaicing.
We introduce a range of network models and modifications, and compare them with classical methods and existing reference network approaches.
Results indicate that our networks outperform or match reference models in both datasets demonstrating exceptional performance.
arXiv Detail & Related papers (2023-12-21T08:02:49Z) - Benchmarking Deep Learning Classifiers for SAR Automatic Target
Recognition [7.858656052565242]
This paper comprehensively benchmarks several advanced deep learning models for SAR ATR with multiple distinct SAR imagery datasets.
We evaluate and compare the five classifiers concerning their classification accuracy runtime performance in terms of inference throughput and analytical performance.
No clear model winner emerges from all of our chosen metrics and a one model rules all case is doubtful in the domain of SAR ATR.
arXiv Detail & Related papers (2023-12-12T02:20:39Z) - Neural Network Pruning by Gradient Descent [7.427858344638741]
We introduce a novel and straightforward neural network pruning framework that incorporates the Gumbel-Softmax technique.
We demonstrate its exceptional compression capability, maintaining high accuracy on the MNIST dataset with only 0.15% of the original network parameters.
We believe our method opens a promising new avenue for deep learning pruning and the creation of interpretable machine learning systems.
arXiv Detail & Related papers (2023-11-21T11:12:03Z) - Physics Inspired Hybrid Attention for SAR Target Recognition [61.01086031364307]
We propose a physics inspired hybrid attention (PIHA) mechanism and the once-for-all (OFA) evaluation protocol to address the issues.
PIHA leverages the high-level semantics of physical information to activate and guide the feature group aware of local semantics of target.
Our method outperforms other state-of-the-art approaches in 12 test scenarios with same ASC parameters.
arXiv Detail & Related papers (2023-09-27T14:39:41Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
This work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods.
The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS) and average training overhead.
Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR.
arXiv Detail & Related papers (2022-05-02T12:23:55Z) - Deep Impulse Responses: Estimating and Parameterizing Filters with Deep
Networks [76.830358429947]
Impulse response estimation in high noise and in-the-wild settings is a challenging problem.
We propose a novel framework for parameterizing and estimating impulse responses based on recent advances in neural representation learning.
arXiv Detail & Related papers (2022-02-07T18:57:23Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
This paper explores a novel frequency-aware dynamic network for dividing the input into multiple parts according to its coefficients in the discrete cosine transform (DCT) domain.
In practice, the high-frequency part will be processed using expensive operations and the lower-frequency part is assigned with cheap operations to relieve the computation burden.
Experiments conducted on benchmark SISR models and datasets show that the frequency-aware dynamic network can be employed for various SISR neural architectures.
arXiv Detail & Related papers (2021-03-15T12:54:26Z) - LoRD-Net: Unfolded Deep Detection Network with Low-Resolution Receivers [104.01415343139901]
We propose a deep detector entitled LoRD-Net for recovering information symbols from one-bit measurements.
LoRD-Net has a task-based architecture dedicated to recovering the underlying signal of interest.
We evaluate the proposed receiver architecture for one-bit signal recovery in wireless communications.
arXiv Detail & Related papers (2021-02-05T04:26:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.