Robust identifiability for symbolic recovery of differential equations
- URL: http://arxiv.org/abs/2410.09938v1
- Date: Sun, 13 Oct 2024 17:45:14 GMT
- Title: Robust identifiability for symbolic recovery of differential equations
- Authors: Hillary Hauger, Philipp Scholl, Gitta Kutyniok,
- Abstract summary: This paper investigates how noise influences the uniqueness and identifiability of physical laws governed by partial differential equations (PDEs)
We introduce new algorithms that account for noise, providing thresholds to assess uniqueness and identifying situations where excessive noise hinders reliable conclusions.
- Score: 14.08907045605149
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Recent advancements in machine learning have transformed the discovery of physical laws, moving from manual derivation to data-driven methods that simultaneously learn both the structure and parameters of governing equations. This shift introduces new challenges regarding the validity of the discovered equations, particularly concerning their uniqueness and, hence, identifiability. While the issue of non-uniqueness has been well-studied in the context of parameter estimation, it remains underexplored for algorithms that recover both structure and parameters simultaneously. Early studies have primarily focused on idealized scenarios with perfect, noise-free data. In contrast, this paper investigates how noise influences the uniqueness and identifiability of physical laws governed by partial differential equations (PDEs). We develop a comprehensive mathematical framework to analyze the uniqueness of PDEs in the presence of noise and introduce new algorithms that account for noise, providing thresholds to assess uniqueness and identifying situations where excessive noise hinders reliable conclusions. Numerical experiments demonstrate the effectiveness of these algorithms in detecting uniqueness despite the presence of noise.
Related papers
- Sparse discovery of differential equations based on multi-fidelity
Gaussian process [0.8088384541966945]
Sparse identification of differential equations aims to compute the analytic expressions from the observed data explicitly.
It exhibits sensitivity to the noise in the observed data, particularly for the derivatives computations.
Existing literature predominantly concentrates on single-fidelity (SF) data, which imposes limitations on its applicability.
We present two novel approaches to address these problems from the view of uncertainty quantification.
arXiv Detail & Related papers (2024-01-22T10:38:14Z) - Nonparametric Evaluation of Noisy ICA Solutions [5.749787074942513]
Independent Component Analysis (ICA) was introduced in the 1980's as a model for Blind Source Separation (BSS)
We develop a nonparametric score to adaptively pick the right algorithm for ICA with arbitrary Gaussian noise.
arXiv Detail & Related papers (2024-01-16T16:18:17Z) - Towards stable real-world equation discovery with assessing
differentiating quality influence [52.2980614912553]
We propose alternatives to the commonly used finite differences-based method.
We evaluate these methods in terms of applicability to problems, similar to the real ones, and their ability to ensure the convergence of equation discovery algorithms.
arXiv Detail & Related papers (2023-11-09T23:32:06Z) - Automatically identifying ordinary differential equations from data [0.0]
We propose a methodology to identify dynamical laws by integrating denoising techniques to smooth the signal.
We evaluate our method on well-known ordinary differential equations with an ensemble of random initial conditions.
arXiv Detail & Related papers (2023-04-21T18:00:03Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
We explore training efficient and robust AI-enhanced numerical solvers with a small data size by mitigating intrinsic noise disturbances.
We first analyze the ability of the self-attention mechanism to regulate noise in supervised learning and then propose a simple-yet-effective numerical solver, Attr, which introduces an additive self-attention mechanism to the numerical solution of differential equations.
arXiv Detail & Related papers (2023-02-05T01:39:21Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
We derive a likelihood characterisation for the overall data that leads us to extend a previous EM-based algorithm.
The new algorithm learns to approximate the (unidentifiability) region of model parameters from such mixed data sources.
It delivers interval approximations to counterfactual results, which collapse to points in the identifiable case.
arXiv Detail & Related papers (2022-12-06T12:42:11Z) - Symbolic Recovery of Differential Equations: The Identifiability Problem [52.158782751264205]
Symbolic recovery of differential equations is the ambitious attempt at automating the derivation of governing equations.
We provide both necessary and sufficient conditions for a function to uniquely determine the corresponding differential equation.
We then use our results to devise numerical algorithms aiming to determine whether a function solves a differential equation uniquely.
arXiv Detail & Related papers (2022-10-15T17:32:49Z) - Identifiability and Asymptotics in Learning Homogeneous Linear ODE Systems from Discrete Observations [114.17826109037048]
Ordinary Differential Equations (ODEs) have recently gained a lot of attention in machine learning.
theoretical aspects, e.g., identifiability and properties of statistical estimation are still obscure.
This paper derives a sufficient condition for the identifiability of homogeneous linear ODE systems from a sequence of equally-spaced error-free observations sampled from a single trajectory.
arXiv Detail & Related papers (2022-10-12T06:46:38Z) - A Causality-Based Learning Approach for Discovering the Underlying
Dynamics of Complex Systems from Partial Observations with Stochastic
Parameterization [1.2882319878552302]
This paper develops a new iterative learning algorithm for complex turbulent systems with partial observations.
It alternates between identifying model structures, recovering unobserved variables, and estimating parameters.
Numerical experiments show that the new algorithm succeeds in identifying the model structure and providing suitable parameterizations for many complex nonlinear systems.
arXiv Detail & Related papers (2022-08-19T00:35:03Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
We investigate and compare the performance of several local and global smoothing techniques to a priori denoise the state measurements.
We show that, in general, global methods, which use the entire measurement data set, outperform local methods, which employ a neighboring data subset around a local point.
arXiv Detail & Related papers (2022-01-29T23:31:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.