Deep-Ace: LSTM-based Prokaryotic Lysine Acetylation Site Predictor
- URL: http://arxiv.org/abs/2410.09968v2
- Date: Sun, 20 Oct 2024 06:25:43 GMT
- Title: Deep-Ace: LSTM-based Prokaryotic Lysine Acetylation Site Predictor
- Authors: Maham Ilyas, Abida Yasmeen, Yaser Daanial Khan, Arif Mahmood,
- Abstract summary: Acetylation of lysine residues (K-Ace) is a post-translation modification occurring in both prokaryotes and eukaryotes.
In the current work we propose Deep-Ace, a deep learning-based framework using Long-Short-Term-Memory (LSTM) network.
Our proposed method has outperformed existing state of the art models achieving accuracy as 0.80, 0.79, 0.71, 0.75, 0.80, 0.83, 0.756, and 0.82 respectively for eight bacterial species.
- Score: 10.293190253043049
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Acetylation of lysine residues (K-Ace) is a post-translation modification occurring in both prokaryotes and eukaryotes. It plays a crucial role in disease pathology and cell biology hence it is important to identify these K-Ace sites. In the past, many machine learning-based models using hand-crafted features and encodings have been used to find and analyze the characteristics of K-Ace sites however these methods ignore long term relationships within sequences and therefore observe performance degradation. In the current work we propose Deep-Ace, a deep learning-based framework using Long-Short-Term-Memory (LSTM) network which has the ability to understand and encode long-term relationships within a sequence. Such relations are vital for learning discriminative and effective sequence representations. In the work reported here, the use of LSTM to extract deep features as well as for prediction of K-Ace sites using fully connected layers for eight different species of prokaryotic models (including B. subtilis, C. glutamicum, E. coli, G. kaustophilus, S. eriocheiris, B. velezensis, S. typhimurium, and M. tuberculosis) has been explored. Our proposed method has outperformed existing state of the art models achieving accuracy as 0.80, 0.79, 0.71, 0.75, 0.80, 0.83, 0.756, and 0.82 respectively for eight bacterial species mentioned above. The method with minor modifications can be used for eukaryotic systems and can serve as a tool for the prognosis and diagnosis of various diseases in humans.
Related papers
- CRTRE: Causal Rule Generation with Target Trial Emulation Framework [47.2836994469923]
We introduce a novel method called causal rule generation with target trial emulation framework (CRTRE)
CRTRE applies randomize trial design principles to estimate the causal effect of association rules.
We then incorporate such association rules for the downstream applications such as prediction of disease onsets.
arXiv Detail & Related papers (2024-11-10T02:40:06Z) - Efficient Quality Control of Whole Slide Pathology Images with Human-in-the-loop Training [3.2646075700744928]
Histo whole slide images (WSIs) are being widely used to develop deep learning-based diagnostic solutions, especially for precision oncology.
Most of these diagnostic softwares are vulnerable to biases and impurities in the training and test data which can lead to inaccurate diagnoses.
We introduce HistoROI, a robust yet lightweight deep learning-based classifier to segregate WSI into six broad tissue regions.
arXiv Detail & Related papers (2024-09-29T07:08:45Z) - PathoLM: Identifying pathogenicity from the DNA sequence through the Genome Foundation Model [9.285895422810704]
PathoLM is a cutting-edge pathogen language model optimized for the identification of pathogenicity in bacterial and viral sequences.
We developed a comprehensive data set comprising approximately 30 species of viruses and bacteria, including ESKAPEE pathogens.
In comparative assessments, PathoLM dramatically outperforms existing models like DciPatho, demonstrating robust zero-shot and few-shot capabilities.
arXiv Detail & Related papers (2024-06-19T00:53:48Z) - A Diagnostic Model for Acute Lymphoblastic Leukemia Using Metaheuristics and Deep Learning Methods [6.318593483920089]
Acute lymphoblastic leukemia (ALL) severity is determined by the presence and ratios of blast cells.
In this paper, a ResNet-based feature extractor is utilized to detect ALL, along with a variety of feature selectors and classifiers.
This technique got an impressive 90.71% accuracy and 95.76% sensitivity for the relevant classifications, and its metrics on this dataset outperformed others.
arXiv Detail & Related papers (2024-06-02T13:25:44Z) - CIMIL-CRC: a clinically-informed multiple instance learning framework for patient-level colorectal cancer molecular subtypes classification from H\&E stained images [42.771819949806655]
We introduce CIMIL-CRC', a framework that solves the MSI/MSS MIL problem by efficiently combining a pre-trained feature extraction model with principal component analysis (PCA) to aggregate information from all patches.
We assessed our CIMIL-CRC method using the average area under the curve (AUC) from a 5-fold cross-validation experimental setup for model development on the TCGA-CRC-DX cohort.
arXiv Detail & Related papers (2024-01-29T12:56:11Z) - Classification of lung cancer subtypes on CT images with synthetic
pathological priors [41.75054301525535]
Cross-scale associations exist in the image patterns between the same case's CT images and its pathological images.
We propose self-generating hybrid feature network (SGHF-Net) for accurately classifying lung cancer subtypes on CT images.
arXiv Detail & Related papers (2023-08-09T02:04:05Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - A Novel Dataset and a Deep Learning Method for Mitosis Nuclei
Segmentation and Classification [10.960222475663006]
Mitosis nuclei count is one of the important indicators for the pathological diagnosis of breast cancer.
We propose a two-stage mitosis segmentation and classification method, named SCMitosis.
The proposed model is verified on the ICPR 2012 dataset, and the highest F-score value of 0.8687 is obtained.
arXiv Detail & Related papers (2022-12-27T08:12:42Z) - Comparative analysis of deep learning approaches for AgNOR-stained
cytology samples interpretation [52.77024349608834]
This paper provides a way to analyze argyrophilic nucleolar organizer regions (AgNOR) stained slide using deep learning approaches.
Our results show that the semantic segmentation using U-Net with ResNet-18 or ResNet-34 as the backbone have similar results.
The best model shows an IoU for nucleus, cluster, and satellites of 0.83, 0.92, and 0.99 respectively.
arXiv Detail & Related papers (2022-10-19T15:15:32Z) - Cervical Cytology Classification Using PCA & GWO Enhanced Deep Features
Selection [1.990876596716716]
Cervical cancer is one of the most deadly and common diseases among women worldwide.
We propose a fully automated framework that utilizes Deep Learning and feature selection.
The framework is evaluated on three publicly available benchmark datasets.
arXiv Detail & Related papers (2021-06-09T08:57:22Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
We train >35,000 neural network models, sweeping over common featurization techniques.
We found the RNA-seq to be highly redundant and informative even with subsets larger than 128 features.
arXiv Detail & Related papers (2020-04-30T20:42:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.