Improving accuracy and convergence of federated learning edge computing methods for generalized DER forecasting applications in power grid
- URL: http://arxiv.org/abs/2410.10018v1
- Date: Sun, 13 Oct 2024 21:34:00 GMT
- Title: Improving accuracy and convergence of federated learning edge computing methods for generalized DER forecasting applications in power grid
- Authors: Vineet Jagadeesan Nair, Lucas Pereira,
- Abstract summary: This proposal aims to develop more accurate federated learning (FL) methods for forecasting distributed energy resources (DER)
This will be achieved by (i) leveraging recently developed extensions of FL such as hierarchical and iterative clustering to improve performance with non-IID data, (ii) experimenting with different types of FL global models well-suited to time-series data, and (iii) incorporating domain-specific knowledge from power systems to build more general FL frameworks and architectures.
- Score: 2.1485350418225244
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This proposal aims to develop more accurate federated learning (FL) methods with faster convergence properties and lower communication requirements, specifically for forecasting distributed energy resources (DER) such as renewables, energy storage, and loads in modern, low-carbon power grids. This will be achieved by (i) leveraging recently developed extensions of FL such as hierarchical and iterative clustering to improve performance with non-IID data, (ii) experimenting with different types of FL global models well-suited to time-series data, and (iii) incorporating domain-specific knowledge from power systems to build more general FL frameworks and architectures that can be applied to diverse types of DERs beyond just load forecasting, and with heterogeneous clients.
Related papers
- CENTS: Generating synthetic electricity consumption time series for rare and unseen scenarios [4.997673761305336]
We propose a method for creating high-fidelity electricity consumption time series data for rare and unseen context variables.
Our results highlight the efficacy of the proposed method in generating realistic household-level electricity consumption data.
arXiv Detail & Related papers (2025-01-24T11:52:52Z) - Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
Time series forecasting plays a critical role in various real-world applications, including energy consumption prediction, disease transmission monitoring, and weather forecasting.
Most existing methods rely on a centralized training paradigm, where large amounts of data are collected from distributed devices to a central cloud server.
We propose a novel framework, Fed-TREND, to address data heterogeneity by generating informative synthetic data as auxiliary knowledge carriers.
arXiv Detail & Related papers (2024-11-24T04:56:45Z) - POMONAG: Pareto-Optimal Many-Objective Neural Architecture Generator [4.09225917049674]
Transferable NAS has emerged, generalizing the search process from dataset-dependent to task-dependent.
This paper introduces POMONAG, extending DiffusionNAG via a many-optimal diffusion process.
Results were validated on two search spaces -- NAS201 and MobileNetV3 -- and evaluated across 15 image classification datasets.
arXiv Detail & Related papers (2024-09-30T16:05:29Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - Tackling Computational Heterogeneity in FL: A Few Theoretical Insights [68.8204255655161]
We introduce and analyse a novel aggregation framework that allows for formalizing and tackling computational heterogeneous data.
Proposed aggregation algorithms are extensively analyzed from a theoretical, and an experimental prospective.
arXiv Detail & Related papers (2023-07-12T16:28:21Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
Long-term time-series forecasting (LTTF) has become a pressing demand in many applications, such as wind power supply planning.
Transformer models have been adopted to deliver high prediction capacity because of the high computational self-attention mechanism.
We propose an efficient Transformerbased model, named Conformer, which differentiates itself from existing methods for LTTF in three aspects.
arXiv Detail & Related papers (2023-01-05T13:59:29Z) - Clustered Federated Learning based on Nonconvex Pairwise Fusion [22.82565500426576]
We introduce a novel clustered FL setting called Fusion Clustering (FPFC)
FPFC can perform partial updates at each communication allows parallel computation with variable workload.
We also propose a new practical strategy for FLFC with general losses and robustness.
arXiv Detail & Related papers (2022-11-08T13:04:56Z) - Heterogeneous Ensemble Knowledge Transfer for Training Large Models in
Federated Learning [22.310090483499035]
Federated learning (FL) enables edge-devices to collaboratively learn a model without disclosing their private data to a central aggregating server.
Most existing FL algorithms require models of identical architecture to be deployed across the clients and server.
We propose a novel ensemble knowledge transfer method named Fed-ET in which small models are trained on clients, and used to train a larger model at the server.
arXiv Detail & Related papers (2022-04-27T05:18:32Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
This work develops a new approach that enables data-driven methods to continuously learn and optimize resource allocation strategies in a dynamic environment.
We propose to build the notion of continual learning into wireless system design, so that the learning model can incrementally adapt to the new episodes.
Our design is based on a novel bilevel optimization formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2021-05-03T07:23:39Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
We show the hierarchical learning structure of the proposed edge-assisted democratized learning mechanism, namely Edge-DemLearn.
We also validate Edge-DemLearn as a flexible model training mechanism to build a distributed control and aggregation methodology in regions.
arXiv Detail & Related papers (2020-12-01T11:46:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.