Extending Simulability of Cliffords and Matchgates
- URL: http://arxiv.org/abs/2410.10068v2
- Date: Mon, 28 Oct 2024 13:03:41 GMT
- Title: Extending Simulability of Cliffords and Matchgates
- Authors: Andrew M. Projansky, Jason Necaise, James D. Whitfield,
- Abstract summary: We study simulability of marginals as well as Pauli expectation values of Clifford and matchgate hybrid circuits.
Most importantly, we show that the known simulability of Pauli expectation values of Clifford circuits acting on product states can be generalized to Clifford circuits acting after any matchgate circuit.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Though Cliffords and matchgates are both examples of classically simulable circuits, they are considered simulable for different reasons. While the simulability of Clifford conjugated matchgate circuits for single qubit outputs has been briefly considered, the simulability of Clifford and matchgate hybrid circuits has not been generalized up to this point. In this paper we resolve this, studying simulability of marginals as well as Pauli expectation values of Clifford and matchgate hybrid circuits. We describe a hierarchy of Clifford circuits, and find that as we consider more general Cliffords, we lose some amount of simulability of bitstring outputs. Most importantly, we show that the known simulability of Pauli expectation values of Clifford circuits acting on product states can be generalized to Clifford circuits acting after any matchgate circuit. We conclude with some general discussion about the relationship between Cliffords and matchgates, and argue that we can understand stabilizer states as the vacuum states of particular fermion-to-qubit encodings.
Related papers
- Clifford circuits over non-cyclic abelian groups [0.0]
We show that every Clifford circuit can be efficiently classically simulated.
We additionally provide circuits for a universal quantum computing scheme based on local two-qudit Clifford gates and magic states.
arXiv Detail & Related papers (2024-02-21T18:26:25Z) - Low-depth Clifford circuits approximately solve MaxCut [44.99833362998488]
We introduce a quantum-inspired approximation algorithm for MaxCut based on low-depth Clifford circuits.
Our algorithm finds an approximate solution of MaxCut on an $N$-vertex graph by building a depth $O(N)$ Clifford circuit.
arXiv Detail & Related papers (2023-10-23T15:20:03Z) - Simulation of IBM's kicked Ising experiment with Projected Entangled
Pair Operator [71.10376783074766]
We perform classical simulations of the 127-qubit kicked Ising model, which was recently emulated using a quantum circuit with error mitigation.
Our approach is based on the projected entangled pair operator (PEPO) in the Heisenberg picture.
We develop a Clifford expansion theory to compute exact expectation values and use them to evaluate algorithms.
arXiv Detail & Related papers (2023-08-06T10:24:23Z) - Simulating quantum circuit expectation values by Clifford perturbation
theory [0.0]
We consider the expectation value problem for circuits composed of Clifford gates and non-Clifford Pauli rotations.
We introduce a perturbative approach based on the truncation of the exponentially growing sum of Pauli terms in the Heisenberg picture.
Results indicate that this systematically improvable perturbative method offers a viable alternative to exact methods for approxing expectation values of large near-Clifford circuits.
arXiv Detail & Related papers (2023-06-07T21:42:10Z) - Finding the disjointness of stabilizer codes is NP-complete [77.34726150561087]
We show that the problem of calculating the $c-disjointness, or even approximating it to within a constant multiplicative factor, is NP-complete.
We provide bounds on the disjointness for various code families, including the CSS codes,$d codes and hypergraph codes.
Our results indicate that finding fault-tolerant logical gates for generic quantum error-correcting codes is a computationally challenging task.
arXiv Detail & Related papers (2021-08-10T15:00:20Z) - Simulating quench dynamics on a digital quantum computer with
data-driven error mitigation [62.997667081978825]
We present one of the first implementations of several Clifford data regression based methods which are used to mitigate the effect of noise in real quantum data.
We find in general Clifford data regression based techniques are advantageous in comparison with zero-noise extrapolation.
This is the largest systems investigated so far in a study of this type.
arXiv Detail & Related papers (2021-03-23T16:56:14Z) - Transitions in entanglement complexity in random quantum circuits by
measurements [0.0]
Random Clifford circuits doped with non Clifford gates exhibit transitions to universal entanglement spectrum statistics.
We show that doping a Clifford circuit with $O(n)$ single qubit non Clifford measurements is both necessary and sufficient to drive the transition to universal fluctuations of the purity.
arXiv Detail & Related papers (2021-03-12T19:00:04Z) - A Generic Compilation Strategy for the Unitary Coupled Cluster Ansatz [68.8204255655161]
We describe a compilation strategy for Variational Quantum Eigensolver (VQE) algorithms.
We use the Unitary Coupled Cluster (UCC) ansatz to reduce circuit depth and gate count.
arXiv Detail & Related papers (2020-07-20T22:26:16Z) - Hadamard-free circuits expose the structure of the Clifford group [9.480212602202517]
The Clifford group plays a central role in quantum randomized benchmarking, quantum tomography, and error correction protocols.
We show that any Clifford operator can be uniquely written in the canonical form $F_HSF$.
A surprising connection is highlighted between random uniform Clifford operators and the Mallows distribution on the symmetric group.
arXiv Detail & Related papers (2020-03-20T17:51:36Z) - Efficient unitary designs with a system-size independent number of
non-Clifford gates [2.387952453171487]
It takes exponential resources to produce Haar-random unitaries drawn from the full $n$-qubit group.
Unitary $t-designs mimic the Haar-$-th moments.
We derive novel bounds on the convergence time of random Clifford circuits to the $t$-th moment of the uniform distribution on the Clifford group.
arXiv Detail & Related papers (2020-02-21T19:41:07Z) - Hardware-Encoding Grid States in a Non-Reciprocal Superconducting
Circuit [62.997667081978825]
We present a circuit design composed of a non-reciprocal device and Josephson junctions whose ground space is doubly degenerate and the ground states are approximate codewords of the Gottesman-Kitaev-Preskill (GKP) code.
We find that the circuit is naturally protected against the common noise channels in superconducting circuits, such as charge and flux noise, implying that it can be used for passive quantum error correction.
arXiv Detail & Related papers (2020-02-18T16:45:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.