論文の概要: Divide, Reweight, and Conquer: A Logit Arithmetic Approach for In-Context Learning
- arxiv url: http://arxiv.org/abs/2410.10074v1
- Date: Mon, 14 Oct 2024 01:34:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 03:14:03.594348
- Title: Divide, Reweight, and Conquer: A Logit Arithmetic Approach for In-Context Learning
- Title(参考訳): ディバイド、リウェイト、コンカー : 文脈内学習におけるロジット算術的アプローチ
- Authors: Chengsong Huang, Langlin Huang, Jiaxin Huang,
- Abstract要約: 大規模言語モデル(LLM)の重要な機能として、インコンテキスト学習(ICL)が登場
複数の実演のロジットベースアンサンブルを用いてICLを強化する新しいフレームワークであるLogit Arithmetic Reweighting Approach (LARA)を提案する。
- 参考スコア(独自算出の注目度): 19.16587730306472
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In-Context Learning (ICL) emerges as a key feature for Large Language Models (LLMs), allowing them to adapt to new tasks by leveraging task-specific examples without updating model parameters. However, ICL faces challenges with increasing numbers of examples due to performance degradation and quadratic computational costs. In this paper, we propose Logit Arithmetic Reweighting Approach (LARA), a novel framework that enhances ICL by using logit-based ensembling of multiple demonstrations. Our approach divides long input demonstrations into parallelizable shorter inputs to significantly reduce memory requirements, and then effectively aggregate the information by reweighting logits of each group via a non-gradient optimization approach. We further introduce Binary LARA (B-LARA), a variant that constrains weights to binary values to simplify the search space and reduces memory usage by filtering out less informative demonstration groups. Experiments on BBH and MMLU demonstrate that LARA and B-LARA outperform all baseline methods in both accuracy and memory efficiency. We also conduct extensive analysis to show that LARA generalizes well to scenarios of varying numbers of examples from limited to many-shot demonstrations.
- Abstract(参考訳): In-Context Learning (ICL) は、Large Language Models (LLM) の重要な機能として登場し、モデルパラメータを更新せずにタスク固有の例を活用することで、新しいタスクに適応できるようにする。
しかし、ICLは性能劣化と2次計算コストによるサンプル数の増加に直面する。
本稿では,複数デモのロジットベースアンサンブルを用いてICLを強化する新しいフレームワークであるLogit Arithmetic Reweighting Approach (LARA)を提案する。
提案手法では,長い入力のデモを並列化可能な短い入力に分割し,メモリ要求を大幅に低減し,非線形最適化手法を用いて各グループのロジットを再重み付けすることで,情報を効果的に集約する。
さらにBinary LARA(B-LARA)を導入し、重みを二進値に制限し、検索空間を単純化し、より情報に乏しいデモグループをフィルタリングすることでメモリ使用量を削減する。
BBHとMMLUの実験では、LARAとB-LARAは精度とメモリ効率の両方で全てのベースライン法より優れていた。
我々はまた、LARAが、限定的な実演から多発的な実演まで、様々な数の実演のシナリオによく当てはまることを示すために、広範囲な分析を行う。
関連論文リスト
- Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
大規模言語モデル(LLM)は急速に進歩し、印象的な機能を示している。
In-Context Learning (ICL) など。
効率的なファインチューニング(PEFT)は、現在2つの主要な拡張方法である。
下流タスクへのLLM。
我々は、モデルが微調整なしで新しいタスクに迅速に適応できるパラダイムである参照信頼復号(RTD)を提案する。
論文 参考訳(メタデータ) (2024-09-30T10:48:20Z) - Tender: Accelerating Large Language Models via Tensor Decomposition and Runtime Requantization [0.6445087473595953]
大規模言語モデル(LLM)は、機械学習における様々なタスクにおいて優れたパフォーマンスを示す。
LLM推論のデプロイは、高い計算とメモリ要求のために問題となる。
我々は,低精度でLLM推論を効率的に展開できるアルゴリズム-ハードウェア共設計ソリューションであるテンダーを提案する。
論文 参考訳(メタデータ) (2024-06-16T09:51:55Z) - DeTriever: Decoder-representation-based Retriever for Improving NL2SQL In-Context Learning [19.93800175353809]
DeTrieverは、隠れた状態の重み付けを学習する新しいデモ検索フレームワークである。
提案手法は1ショットNL2タスクにおける最先端のベースラインを大幅に上回る。
論文 参考訳(メタデータ) (2024-06-12T06:33:54Z) - Implicit In-context Learning [37.0562059811099]
In-context Learning (ICL)は、大規模な言語モデルに対して、テストクエリの前にいくつかの実演例をプレフィックスすることで、推論中に目に見えないタスクに適応する権限を与える。
Inlicit In-context Learning (I2CL)は、従来のICLにまつわる課題に、アクティベーション空間内の実演例を吸収することで対処する革新的なパラダイムである。
I2CLは、ゼロショットコストで数ショットのパフォーマンスを達成し、デモ例のバリエーションに対して堅牢性を示す。
論文 参考訳(メタデータ) (2024-05-23T14:57:52Z) - ParaICL: Towards Robust Parallel In-Context Learning [74.38022919598443]
大規模言語モデル(LLM)が自然言語処理の標準となっている。
インコンテキスト・ラーニング(ICL)は、いくつかの実演例の選択に依存している。
パラレルインコンテキスト学習(ParaICL)という新しい手法を提案する。
論文 参考訳(メタデータ) (2024-03-31T05:56:15Z) - Learning to Reduce: Optimal Representations of Structured Data in
Prompting Large Language Models [42.16047343029512]
大規模言語モデル(LLM)は汎用AIエージェントとして広く利用されている。
本稿では,入力コンテキストの縮小バージョンを生成するために,言語モデルを微調整するフレームワークであるLearning to Reduceを提案する。
入力コンテキストから関連する証拠を選択する際に,本モデルが同等の精度を達成することを示す。
論文 参考訳(メタデータ) (2024-02-22T00:41:23Z) - Which Examples to Annotate for In-Context Learning? Towards Effective
and Efficient Selection [35.924633625147365]
大規模言語モデル(LLM)は、文脈内学習(ICL)を介して新しいタスクに適応できる
そこで本研究では,ICLのアクティブな学習手法について検討し,アノテートのための予算が限られている。
本稿では,モデルが不確実であることを示すモデル適応型最適化自由アルゴリズムAdaICLを提案する。
論文 参考訳(メタデータ) (2023-10-30T22:03:55Z) - Improving Input-label Mapping with Demonstration Replay for In-context
Learning [67.57288926736923]
In-context Learning (ICL)は、大規模な自己回帰言語モデルの出現する能力である。
Sliding Causal Attention (RdSca) と呼ばれる新しいICL法を提案する。
ICL実験において,本手法は入力ラベルマッピングを大幅に改善することを示す。
論文 参考訳(メタデータ) (2023-10-30T14:29:41Z) - Large Language Models Are Latent Variable Models: Explaining and Finding
Good Demonstrations for In-Context Learning [104.58874584354787]
近年,事前学習型大規模言語モデル (LLM) は,インコンテキスト学習(in-context learning)として知られる推論時少数ショット学習能力を実現する上で,顕著な効率性を示している。
本研究では,現実のLLMを潜在変数モデルとみなし,ベイズレンズによる文脈内学習現象を考察することを目的とする。
論文 参考訳(メタデータ) (2023-01-27T18:59:01Z) - Improving Meta-learning for Low-resource Text Classification and
Generation via Memory Imitation [87.98063273826702]
本稿では,メモリ模倣メタラーニング(MemIML)手法を提案する。
本手法の有効性を証明するために理論的解析を行った。
論文 参考訳(メタデータ) (2022-03-22T12:41:55Z) - A Lagrangian Duality Approach to Active Learning [119.36233726867992]
トレーニングデータのサブセットのみをラベル付けするバッチアクティブな学習問題を考察する。
制約付き最適化を用いて学習問題を定式化し、各制約はラベル付きサンプルにモデルの性能を拘束する。
数値実験により,提案手法は最先端の能動学習法と同等かそれ以上に機能することを示した。
論文 参考訳(メタデータ) (2022-02-08T19:18:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。