Large Language Model-Enhanced Reinforcement Learning for Generic Bus Holding Control Strategies
- URL: http://arxiv.org/abs/2410.10212v1
- Date: Mon, 14 Oct 2024 07:10:16 GMT
- Title: Large Language Model-Enhanced Reinforcement Learning for Generic Bus Holding Control Strategies
- Authors: Jiajie Yu, Yuhong Wang, Wei Ma,
- Abstract summary: This study introduces an automatic reward generation paradigm by leveraging the in-context learning and reasoning capabilities of Large Language Models (LLMs)
To evaluate the feasibility of the proposed LLM-enhanced RL paradigm, it is applied to various bus holding control scenarios, including a synthetic single-line system and a real-world multi-line system.
- Score: 12.599164162404994
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bus holding control is a widely-adopted strategy for maintaining stability and improving the operational efficiency of bus systems. Traditional model-based methods often face challenges with the low accuracy of bus state prediction and passenger demand estimation. In contrast, Reinforcement Learning (RL), as a data-driven approach, has demonstrated great potential in formulating bus holding strategies. RL determines the optimal control strategies in order to maximize the cumulative reward, which reflects the overall control goals. However, translating sparse and delayed control goals in real-world tasks into dense and real-time rewards for RL is challenging, normally requiring extensive manual trial-and-error. In view of this, this study introduces an automatic reward generation paradigm by leveraging the in-context learning and reasoning capabilities of Large Language Models (LLMs). This new paradigm, termed the LLM-enhanced RL, comprises several LLM-based modules: reward initializer, reward modifier, performance analyzer, and reward refiner. These modules cooperate to initialize and iteratively improve the reward function according to the feedback from training and test results for the specified RL-based task. Ineffective reward functions generated by the LLM are filtered out to ensure the stable evolution of the RL agents' performance over iterations. To evaluate the feasibility of the proposed LLM-enhanced RL paradigm, it is applied to various bus holding control scenarios, including a synthetic single-line system and a real-world multi-line system. The results demonstrate the superiority and robustness of the proposed paradigm compared to vanilla RL strategies, the LLM-based controller, and conventional space headway-based feedback control. This study sheds light on the great potential of utilizing LLMs in various smart mobility applications.
Related papers
- Efficient Reinforcement Learning with Large Language Model Priors [18.72288751305885]
Large language models (LLMs) have recently emerged as powerful general-purpose tools.
We propose treating LLMs as prior action distributions and integrating them into RL frameworks.
We show that incorporating LLM-based action priors significantly reduces exploration and complexity optimization.
arXiv Detail & Related papers (2024-10-10T13:54:11Z) - VinePPO: Unlocking RL Potential For LLM Reasoning Through Refined Credit Assignment [66.80143024475635]
We propose VinePPO, a straightforward approach to compute unbiased Monte Carlo-based estimates.
We show that VinePPO consistently outperforms PPO and other RL-free baselines across MATH and GSM8K datasets.
arXiv Detail & Related papers (2024-10-02T15:49:30Z) - Traffic expertise meets residual RL: Knowledge-informed model-based residual reinforcement learning for CAV trajectory control [1.5361702135159845]
This paper introduces a knowledge-informed model-based residual reinforcement learning framework.
It integrates traffic expert knowledge into a virtual environment model, employing the Intelligent Driver Model (IDM) for basic dynamics and neural networks for residual dynamics.
We propose a novel strategy that combines traditional control methods with residual RL, facilitating efficient learning and policy optimization without the need to learn from scratch.
arXiv Detail & Related papers (2024-08-30T16:16:57Z) - Beyond Human Preferences: Exploring Reinforcement Learning Trajectory Evaluation and Improvement through LLMs [12.572869123617783]
Reinforcement learning (RL) faces challenges in evaluating policy trajectories within intricate game tasks.
PbRL presents a pioneering framework that capitalizes on human preferences as pivotal reward signals.
We propose a LLM-enabled automatic preference generation framework named LLM4PG.
arXiv Detail & Related papers (2024-06-28T04:21:24Z) - ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL [80.10358123795946]
We develop a framework for building multi-turn RL algorithms for fine-tuning large language models.
Our framework adopts a hierarchical RL approach and runs two RL algorithms in parallel.
Empirically, we find that ArCHer significantly improves efficiency and performance on agent tasks.
arXiv Detail & Related papers (2024-02-29T18:45:56Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
Reinforcement learning (RL) has become the de facto standard practice for sequential decision-making problems by improving future acting policies with feedback.
Recent developments in large language models (LLMs) have showcased impressive capabilities in language understanding and generation, yet they fall short in exploration and self-improvement capabilities.
We develop an algorithm named LINVIT that incorporates LLM guidance as a regularization factor in value-based RL, leading to significant reductions in the amount of data needed for learning.
arXiv Detail & Related papers (2024-02-25T20:07:13Z) - Reinforcement Learning with Model Predictive Control for Highway Ramp Metering [14.389086937116582]
This work explores the synergy between model-based and learning-based strategies to enhance traffic flow management.
The control problem is formulated as an RL task by crafting a suitable stage cost function.
An MPC-based RL approach, which leverages the MPC optimal problem as a function approximation for the RL algorithm, is proposed to learn to efficiently control an on-ramp.
arXiv Detail & Related papers (2023-11-15T09:50:54Z) - SALMON: Self-Alignment with Instructable Reward Models [80.83323636730341]
This paper presents a novel approach, namely SALMON, to align base language models with minimal human supervision.
We develop an AI assistant named Dromedary-2 with only 6 exemplars for in-context learning and 31 human-defined principles.
arXiv Detail & Related papers (2023-10-09T17:56:53Z) - RL + Model-based Control: Using On-demand Optimal Control to Learn Versatile Legged Locomotion [16.800984476447624]
This paper presents a control framework that combines model-based optimal control and reinforcement learning.
We validate the robustness and controllability of the framework through a series of experiments.
Our framework effortlessly supports the training of control policies for robots with diverse dimensions.
arXiv Detail & Related papers (2023-05-29T01:33:55Z) - Text Generation with Efficient (Soft) Q-Learning [91.47743595382758]
Reinforcement learning (RL) offers a more flexible solution by allowing users to plug in arbitrary task metrics as reward.
We introduce a new RL formulation for text generation from the soft Q-learning perspective.
We apply the approach to a wide range of tasks, including learning from noisy/negative examples, adversarial attacks, and prompt generation.
arXiv Detail & Related papers (2021-06-14T18:48:40Z) - Certified Reinforcement Learning with Logic Guidance [78.2286146954051]
We propose a model-free RL algorithm that enables the use of Linear Temporal Logic (LTL) to formulate a goal for unknown continuous-state/action Markov Decision Processes (MDPs)
The algorithm is guaranteed to synthesise a control policy whose traces satisfy the specification with maximal probability.
arXiv Detail & Related papers (2019-02-02T20:09:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.