RL + Model-based Control: Using On-demand Optimal Control to Learn Versatile Legged Locomotion
- URL: http://arxiv.org/abs/2305.17842v4
- Date: Mon, 30 Sep 2024 01:06:42 GMT
- Title: RL + Model-based Control: Using On-demand Optimal Control to Learn Versatile Legged Locomotion
- Authors: Dongho Kang, Jin Cheng, Miguel Zamora, Fatemeh Zargarbashi, Stelian Coros,
- Abstract summary: This paper presents a control framework that combines model-based optimal control and reinforcement learning.
We validate the robustness and controllability of the framework through a series of experiments.
Our framework effortlessly supports the training of control policies for robots with diverse dimensions.
- Score: 16.800984476447624
- License:
- Abstract: This paper presents a control framework that combines model-based optimal control and reinforcement learning (RL) to achieve versatile and robust legged locomotion. Our approach enhances the RL training process by incorporating on-demand reference motions generated through finite-horizon optimal control, covering a broad range of velocities and gaits. These reference motions serve as targets for the RL policy to imitate, leading to the development of robust control policies that can be learned with reliability. Furthermore, by utilizing realistic simulation data that captures whole-body dynamics, RL effectively overcomes the inherent limitations in reference motions imposed by modeling simplifications. We validate the robustness and controllability of the RL training process within our framework through a series of experiments. In these experiments, our method showcases its capability to generalize reference motions and effectively handle more complex locomotion tasks that may pose challenges for the simplified model, thanks to RL's flexibility. Additionally, our framework effortlessly supports the training of control policies for robots with diverse dimensions, eliminating the necessity for robot-specific adjustments in the reward function and hyperparameters.
Related papers
- Large Language Model-Enhanced Reinforcement Learning for Generic Bus Holding Control Strategies [12.599164162404994]
This study introduces an automatic reward generation paradigm by leveraging the in-context learning and reasoning capabilities of Large Language Models (LLMs)
To evaluate the feasibility of the proposed LLM-enhanced RL paradigm, it is applied to various bus holding control scenarios, including a synthetic single-line system and a real-world multi-line system.
arXiv Detail & Related papers (2024-10-14T07:10:16Z) - Traffic expertise meets residual RL: Knowledge-informed model-based residual reinforcement learning for CAV trajectory control [1.5361702135159845]
This paper introduces a knowledge-informed model-based residual reinforcement learning framework.
It integrates traffic expert knowledge into a virtual environment model, employing the Intelligent Driver Model (IDM) for basic dynamics and neural networks for residual dynamics.
We propose a novel strategy that combines traditional control methods with residual RL, facilitating efficient learning and policy optimization without the need to learn from scratch.
arXiv Detail & Related papers (2024-08-30T16:16:57Z) - Reinforcement Learning for Versatile, Dynamic, and Robust Bipedal Locomotion Control [106.32794844077534]
This paper presents a study on using deep reinforcement learning to create dynamic locomotion controllers for bipedal robots.
We develop a general control solution that can be used for a range of dynamic bipedal skills, from periodic walking and running to aperiodic jumping and standing.
This work pushes the limits of agility for bipedal robots through extensive real-world experiments.
arXiv Detail & Related papers (2024-01-30T10:48:43Z) - Learning Exactly Linearizable Deep Dynamics Models [0.07366405857677226]
We propose a learning method for exactly linearizable dynamical models that can easily apply various control theories to ensure stability, reliability, etc.
The proposed model is employed for the real-time control of an automotive engine, and the results demonstrate good predictive performance and stable control under constraints.
arXiv Detail & Related papers (2023-11-30T05:40:55Z) - Grow Your Limits: Continuous Improvement with Real-World RL for Robotic
Locomotion [66.69666636971922]
We present APRL, a policy regularization framework that modulates the robot's exploration over the course of training.
APRL enables a quadrupedal robot to efficiently learn to walk entirely in the real world within minutes.
arXiv Detail & Related papers (2023-10-26T17:51:46Z) - On Transforming Reinforcement Learning by Transformer: The Development
Trajectory [97.79247023389445]
Transformer, originally devised for natural language processing, has also attested significant success in computer vision.
We group existing developments in two categories: architecture enhancement and trajectory optimization.
We examine the main applications of TRL in robotic manipulation, text-based games, navigation and autonomous driving.
arXiv Detail & Related papers (2022-12-29T03:15:59Z) - Reinforcement Learning for Robust Parameterized Locomotion Control of
Bipedal Robots [121.42930679076574]
We present a model-free reinforcement learning framework for training robust locomotion policies in simulation.
domain randomization is used to encourage the policies to learn behaviors that are robust across variations in system dynamics.
We demonstrate this on versatile walking behaviors such as tracking a target walking velocity, walking height, and turning yaw.
arXiv Detail & Related papers (2021-03-26T07:14:01Z) - RL-Controller: a reinforcement learning framework for active structural
control [0.0]
We present a novel RL-based approach for designing active controllers by introducing RL-Controller, a flexible and scalable simulation environment.
We show that the proposed framework is easily trainable for a five story benchmark building with 65% reductions on average in inter story drifts.
In a comparative study with LQG active control method, we demonstrate that the proposed model-free algorithm learns more optimal actuator forcing strategies.
arXiv Detail & Related papers (2021-03-13T04:42:13Z) - Guided Constrained Policy Optimization for Dynamic Quadrupedal Robot
Locomotion [78.46388769788405]
We introduce guided constrained policy optimization (GCPO), an RL framework based upon our implementation of constrained policy optimization (CPPO)
We show that guided constrained RL offers faster convergence close to the desired optimum resulting in an optimal, yet physically feasible, robotic control behavior without the need for precise reward function tuning.
arXiv Detail & Related papers (2020-02-22T10:15:53Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
We present a novel theoretical connection between information theoretic MPC and entropy regularized RL.
We develop a Q-learning algorithm that can leverage biased models.
arXiv Detail & Related papers (2019-12-31T00:29:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.