High-Coherence Quantum Acoustics with Planar Superconducting Qubits
- URL: http://arxiv.org/abs/2410.10272v1
- Date: Mon, 14 Oct 2024 08:22:18 GMT
- Title: High-Coherence Quantum Acoustics with Planar Superconducting Qubits
- Authors: W. J. M. Franse, C. A. Potts, V. A. S. V. Bittencourt, A. Metelmann, G. A. Steele,
- Abstract summary: High-overtone bulk acoustic resonators (HBARs) represent an attractive mechanical implementation of quantum acoustics.
We demonstrate an implementation of high-coherence HBAR quantum acoustics integrated with a planar superconducting qubit architecture.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum acoustics is an emerging platform for hybrid quantum technologies enabling quantum coherent control of mechanical vibrations. High-overtone bulk acoustic resonators (HBARs) represent an attractive mechanical implementation of quantum acoustics due to their potential for exceptionally high mechanical coherence. Here, we demonstrate an implementation of high-coherence HBAR quantum acoustics integrated with a planar superconducting qubit architecture, demonstrating an acoustically-induced-transparency regime of high cooperativity and weak coupling, analogous to the electrically-induced transparency in atomic physics. Demonstrating high-coherence quantum acoustics with planar superconducting devices enables new applications for acoustic resonators in quantum technologies.
Related papers
- Gated InAs quantum dots embedded in surface acoustic wave cavities for low-noise optomechanics [5.357755726577335]
Self-assembled InAs quantum dots (QDs) are promising optomechanical elements.
We integrate gated QDs and SAW cavities using molecular beam epitaxy and nanofabrication.
arXiv Detail & Related papers (2023-12-15T21:26:22Z) - Thin film aluminum nitride surface acoustic wave resonators for quantum
acoustodynamics [14.431420668034457]
We present the potentials of thin film aluminum nitride to on-chip integrate phonons with superconducting qubits over previous bulk piezoelectric substrates.
We have reported high-quality thin film GHz-SAW resonators with the highest internal quality factor Qi of 5 e4 at the single-phonon level.
arXiv Detail & Related papers (2023-04-02T11:02:04Z) - Quantum acoustic Fano interference of surface phonons [0.0]
We present measurements revealing Fano interference of a resonantly trapped piezoelectric surface acoustic wave (SAW) mode with a broad continuum of surface phonons in a system consisting of a SAW resonator coupled to a superconducting qubit.
The experiments highlight the existence of additional weakly coupled mechanical modes and their influence on the qubit-phonon interaction and underscore the importance of phononic interference in quantum acoustic architectures that have been proposed for quantum information processing applications.
arXiv Detail & Related papers (2023-02-02T17:58:44Z) - An integrated microwave-to-optics interface for scalable quantum
computing [47.187609203210705]
We present a new design for an integrated transducer based on a superconducting resonator coupled to a silicon photonic cavity.
We experimentally demonstrate its unique performance and potential for simultaneously realizing all of the above conditions.
Our device couples directly to a 50-Ohm transmission line and can easily be scaled to a large number of transducers on a single chip.
arXiv Detail & Related papers (2022-10-27T18:05:01Z) - Moving beyond the transmon: Noise-protected superconducting quantum
circuits [55.49561173538925]
superconducting circuits offer opportunities to store and process quantum information with high fidelity.
Noise-protected devices constitute a new class of qubits in which the computational states are largely decoupled from local noise channels.
This Perspective reviews the theoretical principles at the heart of these new qubits, describes recent experiments, and highlights the potential of robust encoding of quantum information in superconducting qubits.
arXiv Detail & Related papers (2021-06-18T18:00:13Z) - Measurements of a quantum bulk acoustic resonator using a
superconducting qubit [0.0]
Phonons hold promise for quantum-focused applications as diverse as sensing, information processing, and communication.
We describe a piezoelectric quantum bulk acoustic resonator (QBAR) with a 4.88 GHz resonant frequency.
We couple this QBAR resonator to a superconducting qubit on a separate die and demonstrate quantum control of the mechanics in the coupled system.
arXiv Detail & Related papers (2020-12-08T17:36:33Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Quantum electrodynamics in a topological waveguide [47.187609203210705]
In this work we investigate the properties of superconducting qubits coupled to a metamaterial waveguide based on a photonic analog of the Su-Schrieffer-Heeger model.
We explore topologically-induced properties of qubits coupled to such a waveguide, ranging from the formation of directional qubit-photon bound states to topology-dependent cooperative radiation effects.
arXiv Detail & Related papers (2020-05-08T00:22:17Z) - A Phononic Bus for Coherent Interfaces Between a Superconducting Quantum
Processor, Spin Memory, and Photonic Quantum Networks [0.0]
We introduce a method for high-fidelity quantum state transduction between a superconducting microwave qubit and the ground state spin system of a solid-state artificial atom.
By combining the complementary strengths of superconducting circuit quantum computing and artificial atoms, the hybrid architecture provides high-fidelity qubit gates with long-lived quantum memory, high-fidelity measurement, large qubit number, reconfigurable qubit connectivity, and high-fidelity state and gate teleportation through optical quantum networks.
arXiv Detail & Related papers (2020-03-18T17:57:59Z) - Entanglement generation via power-of-SWAP operations between dynamic
electron-spin qubits [62.997667081978825]
Surface acoustic waves (SAWs) can create moving quantum dots in piezoelectric materials.
We show how electron-spin qubits located on dynamic quantum dots can be entangled.
arXiv Detail & Related papers (2020-01-15T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.