論文の概要: Exploring Semi-Supervised Learning for Online Mapping
- arxiv url: http://arxiv.org/abs/2410.10279v2
- Date: Mon, 07 Apr 2025 08:52:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 17:33:38.151408
- Title: Exploring Semi-Supervised Learning for Online Mapping
- Title(参考訳): オンラインマッピングのための半教師付き学習の探索
- Authors: Adam Lilja, Erik Wallin, Junsheng Fu, Lars Hammarstrand,
- Abstract要約: オンラインマッピングにおける半教師付き学習(SSL)手法の有効性を実証する。
複数のサンプルから教師の擬似ラベルを融合させることにより,オンラインマッピングの本質的特性を活用する,シンプルかつ効果的な手法を提案する。
Argoverse 2では、ピッツバーグに適応する際に、純粋にラップされていないターゲットドメインデータを組み込むことで、パフォーマンスのギャップを5mIoUから0.5mIoUに短縮する。
- 参考スコア(独自算出の注目度): 1.199778591945574
- License:
- Abstract: The ability to generate online maps using only onboard sensory information is crucial for enabling autonomous driving beyond well-mapped areas. Training models for this task -- predicting lane markers, road edges, and pedestrian crossings -- traditionally require extensive labelled data, which is expensive and labour-intensive to obtain. While semi-supervised learning (SSL) has shown promise in other domains, its potential for online mapping remains largely underexplored. In this work, we bridge this gap by demonstrating the effectiveness of SSL methods for online mapping. Furthermore, we introduce a simple yet effective method leveraging the inherent properties of online mapping by fusing the teacher's pseudo-labels from multiple samples, enhancing the reliability of self-supervised training. If 10% of the data has labels, our method to leverage unlabelled data achieves a 3.5x performance boost compared to only using the labelled data. This narrows the gap to a fully supervised model, using all labels, to just 3.5 mIoU. We also show strong generalization to unseen cities. Specifically, in Argoverse 2, when adapting to Pittsburgh, incorporating purely unlabelled target-domain data reduces the performance gap from 5 to 0.5 mIoU. These results highlight the potential of SSL as a powerful tool for solving the online mapping problem, significantly reducing reliance on labelled data.
- Abstract(参考訳): オンボードのセンサー情報のみを使用してオンラインマップを生成する能力は、うまくマッピングされた領域を超えて自動運転を可能にするために不可欠である。
このタスクのトレーニングモデル(車線標識、道路の端、歩行者の横断を予測)は、伝統的に大量のラベル付きデータを必要とする。
半教師付き学習(SSL)は、他のドメインで約束されているが、オンラインマッピングの可能性はほとんど調査されていない。
本研究では,オンラインマッピングにおけるSSL手法の有効性を示すことによって,このギャップを埋める。
さらに,教師の擬似ラベルを複数のサンプルから融合させることにより,オンラインマッピングの本質的特性を活用した簡易かつ効果的な手法を導入し,自己指導型トレーニングの信頼性を高めた。
ラベル付きデータに10%のラベルがある場合、ラベル付きデータのみを使用する場合と比較して、ラベル付きデータを利用する場合に比べて3.5倍の性能向上が達成される。
これにより、すべてのラベルを使用して完全に教師されたモデルにギャップを狭め、3.5 mIoUに制限される。
我々はまた、目に見えない都市に強力な一般化を示す。
具体的には、Argoverse 2ではピッツバーグに適応する際に、純粋にラップされていないターゲットドメインデータを組み込むことで、パフォーマンスのギャップを5mIoUから0.5mIoUに短縮する。
これらの結果は、オンラインマッピング問題を解決する強力なツールとしてのSSLの可能性を強調し、ラベル付きデータへの依存を大幅に減らした。
関連論文リスト
- Terrain-Informed Self-Supervised Learning: Enhancing Building Footprint Extraction from LiDAR Data with Limited Annotations [1.3243401820948064]
フットプリントマップの構築は、広範な後処理なしで正確なフットプリント抽出を約束する。
ディープラーニング手法は、一般化とラベルの効率の面で課題に直面している。
リモートセンシングに適した地形認識型自己教師型学習を提案する。
論文 参考訳(メタデータ) (2023-11-02T12:34:23Z) - Hierarchical Point-based Active Learning for Semi-supervised Point Cloud
Semantic Segmentation [48.40853126077237]
大規模ポイントクラウドデータをポイントワイドラベルで取得することは、労働集約的だ。
アクティブラーニングは、この目的を達成するための効果的な戦略の1つだが、まだ探索されていない。
本稿では,階層的なポイントベースアクティブラーニング戦略を開発する。
論文 参考訳(メタデータ) (2023-08-22T03:52:05Z) - Navya3DSeg -- Navya 3D Semantic Segmentation Dataset & split generation
for autonomous vehicles [63.20765930558542]
3Dセマンティックデータは、障害物検出やエゴ-車両の局所化といった中核的な認識タスクに有用である。
そこで我々は,大規模生産段階の運用領域に対応する多様なラベル空間を持つ新しいデータセットであるNavala 3D(Navya3DSeg)を提案する。
ラベルのない23のラベル付きシーケンスと25の補足シーケンスが含まれており、ポイントクラウド上の自己教師付きおよび半教師付きセマンティックセマンティックセグメンテーションベンチマークを探索するために設計された。
論文 参考訳(メタデータ) (2023-02-16T13:41:19Z) - A High-Accuracy Unsupervised Person Re-identification Method Using
Auxiliary Information Mined from Datasets [53.047542904329866]
マルチモーダルな特徴学習のためのデータセットから抽出した補助情報を利用する。
本稿では,Restricted Label Smoothing Cross Entropy Loss (RLSCE), Weight Adaptive Triplet Loss (WATL), Dynamic Training Iterations (DTI)の3つの効果的なトレーニング手法を提案する。
論文 参考訳(メタデータ) (2022-05-06T10:16:18Z) - PreTraM: Self-Supervised Pre-training via Connecting Trajectory and Map [58.53373202647576]
軌道予測のための自己教師付き事前学習方式であるPreTraMを提案する。
1) トラジェクティブ・マップ・コントラクティブ・ラーニング(トラジェクティブ・コントラクティブ・ラーニング)、(2) トラジェクティブ・ラーニング(トラジェクティブ・コントラクティブ・ラーニング)、(2) トラジェクティブ・ラーニング(トラジェクティブ・ラーニング)、(2) トラジェクティブ・コントラクティブ・ラーニング(トラジェクティブ・ラーニング)、(2) トラジェクティブ・コントラクティブ・ラーニング(トラジェクティブ・ラーニング)の2つのパートから構成される。
AgentFormerやTrajectron++といった一般的なベースラインに加えて、PreTraMは、挑戦的なnuScenesデータセット上で、FDE-10でパフォーマンスを5.5%と6.9%向上させる。
論文 参考訳(メタデータ) (2022-04-21T23:01:21Z) - ReDAL: Region-based and Diversity-aware Active Learning for Point Cloud
Semantic Segmentation [28.478555264574865]
ReDALは、ラベル取得のために、情報的かつ多様なサブシーン領域のみを自動的に選択することを目的としている。
冗長アノテーションを避けるため,多様性を考慮した選択アルゴリズムも開発されている。
実験の結果,本手法は従来のアクティブラーニング手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2021-07-25T09:40:48Z) - Semantic Labeling of Large-Area Geographic Regions Using Multi-View and
Multi-Date Satellite Images and Noisy OSM Training Labels [0.0]
建物や道路を意味的にラベル付けする新しい多視点学習フレームワークとCNNアーキテクチャを提案する。
多視点セマンティックセグメンテーションへのアプローチは,従来の手法に比べてクラスごとのIoUスコアが4-7%向上した。
論文 参考訳(メタデータ) (2020-08-24T09:03:31Z) - Hidden Footprints: Learning Contextual Walkability from 3D Human Trails [70.01257397390361]
現在のデータセットは、人々がどこにいるか、どこにいるかを教えてくれません。
まず、画像間で人の観察を伝播させ、3D情報を利用して、私たちが「隠れ足跡」と呼ぶものを作成することで、有効なラベル付き歩行可能領域の集合を拡大する。
このようなスパースラベルのために設計されたトレーニング戦略を考案し、クラスバランスの分類損失と文脈逆転損失を組み合わせた。
論文 参考訳(メタデータ) (2020-08-19T23:19:08Z) - Towards Reading Beyond Faces for Sparsity-Aware 4D Affect Recognition [55.15661254072032]
自動4次元表情認識(FER)のための空間認識深層ネットワークを提案する。
まず,深層学習のためのデータ制限問題に対処する新しい拡張手法を提案する。
次に、多視点での畳み込み特徴のスパース表現を計算するために、疎度対応のディープネットワークを提案する。
論文 参考訳(メタデータ) (2020-02-08T13:09:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。