論文の概要: A Comparative Study of Translation Bias and Accuracy in Multilingual Large Language Models for Cross-Language Claim Verification
- arxiv url: http://arxiv.org/abs/2410.10303v1
- Date: Mon, 14 Oct 2024 09:02:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-29 22:24:32.237720
- Title: A Comparative Study of Translation Bias and Accuracy in Multilingual Large Language Models for Cross-Language Claim Verification
- Title(参考訳): 多言語大言語モデルにおける翻訳バイアスと精度の比較検討
- Authors: Aryan Singhal, Veronica Shao, Gary Sun, Ryan Ding, Jonathan Lu, Kevin Zhu,
- Abstract要約: 本研究は,言語間クレーム検証における翻訳バイアスと大規模言語モデルの有効性を体系的に評価する。
本稿では,事前翻訳と自己翻訳の2つの異なる翻訳手法について検討する。
その結果,低リソース言語では表現不足による直接推論の精度が著しく低いことが明らかとなった。
- 参考スコア(独自算出の注目度): 1.566834021297545
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rise of digital misinformation has heightened interest in using multilingual Large Language Models (LLMs) for fact-checking. This study systematically evaluates translation bias and the effectiveness of LLMs for cross-lingual claim verification across 15 languages from five language families: Romance, Slavic, Turkic, Indo-Aryan, and Kartvelian. Using the XFACT dataset to assess their impact on accuracy and bias, we investigate two distinct translation methods: pre-translation and self-translation. We use mBERT's performance on the English dataset as a baseline to compare language-specific accuracies. Our findings reveal that low-resource languages exhibit significantly lower accuracy in direct inference due to underrepresentation in the training data. Furthermore, larger models demonstrate superior performance in self-translation, improving translation accuracy and reducing bias. These results highlight the need for balanced multilingual training, especially in low-resource languages, to promote equitable access to reliable fact-checking tools and minimize the risk of spreading misinformation in different linguistic contexts.
- Abstract(参考訳): デジタル誤報の出現により、ファクトチェックに多言語大言語モデル(LLM)を使うことへの関心が高まっている。
本研究は,ロマンス語,スラヴ語,テュルク語,インド・アーリア語,カルトヴェリア語という5つの言語族の15言語を対象に,翻訳バイアスとLLMの有効性を体系的に評価した。
XFACTデータセットを用いて、その精度とバイアスへの影響を評価し、事前翻訳と自己翻訳の2つの異なる翻訳手法について検討する。
我々は、英語データセット上でmBERTのパフォーマンスをベースラインとして使用し、言語固有の精度を比較する。
その結果,低リソース言語ではトレーニングデータの表現不足により直接推論の精度が著しく低下することが判明した。
さらに,より大規模なモデルでは,自己翻訳の性能が向上し,翻訳精度が向上し,バイアスの低減が図られた。
これらの結果は、信頼性の高い事実チェックツールへの公平なアクセスを促進し、異なる言語文脈で誤情報を拡散するリスクを最小限に抑えるために、特に低リソース言語におけるバランスの取れた多言語訓練の必要性を強調している。
関連論文リスト
- Do Multilingual Large Language Models Mitigate Stereotype Bias? [9.31741279000585]
この研究は、英語、ドイツ語、フランス語、イタリア語、スペイン語で同じ大きさの6つのLLMを体系的に訓練する。
単言語モデルと比較して,多言語モデルの方がバイアスの低いだけでなく,予測精度も優れていることが観察された。
論文 参考訳(メタデータ) (2024-07-08T08:46:50Z) - The Power of Question Translation Training in Multilingual Reasoning: Broadened Scope and Deepened Insights [108.40766216456413]
大規模言語モデルの英語と非英語のパフォーマンスのギャップを埋めるための質問アライメントフレームワークを提案する。
実験結果から、さまざまな推論シナリオ、モデルファミリー、サイズにわたって、多言語のパフォーマンスを向上できることが示された。
我々は、表現空間、生成された応答とデータスケールを分析し、質問翻訳訓練がLLM内の言語アライメントをどのように強化するかを明らかにする。
論文 参考訳(メタデータ) (2024-05-02T14:49:50Z) - Do We Need Language-Specific Fact-Checking Models? The Case of Chinese [15.619421104102516]
本稿では,中国語の事例に着目し,言語固有の事実チェックモデルの潜在的なメリットについて検討する。
まず、翻訳に基づく手法と多言語大言語モデルの限界を実証し、言語固有のシステムの必要性を強調した。
文脈情報を組み込んで文書から証拠をよりよく検索できる中国のファクトチェックシステムを提案する。
論文 参考訳(メタデータ) (2024-01-27T20:26:03Z) - Lost in the Source Language: How Large Language Models Evaluate the Quality of Machine Translation [64.5862977630713]
本研究では,機械翻訳評価タスクにおいて,Large Language Models (LLM) がソースデータと参照データをどのように活用するかを検討する。
参照情報が評価精度を大幅に向上させるのに対して,意外なことに,ソース情報は時として非生産的である。
論文 参考訳(メタデータ) (2024-01-12T13:23:21Z) - MultiTACRED: A Multilingual Version of the TAC Relation Extraction
Dataset [6.7839993945546215]
そこで本研究では,9つの言語群から12種類の言語を対象とするMultiTACREDデータセットについて紹介する。
翻訳とアノテーションのプロジェクションの品質を分析し、エラーカテゴリを特定し、訓練済みの単言語および多言語言語モデルの微調整を実験的に評価する。
対象言語の多くにおいて、モノリンガルREモデルの性能は英語オリジナルに匹敵するものであり、英語とターゲット言語データの組み合わせで訓練された多言語モデルは、モノリンガルモデルよりも優れている。
論文 参考訳(メタデータ) (2023-05-08T09:48:21Z) - Cross-lingual Transfer Learning for Check-worthy Claim Identification
over Twitter [7.601937548486356]
ソーシャルメディアに拡散する誤報は、疑わしいインフォデミックになっている。
本稿では,多言語BERT(mBERT)モデルを用いて,5つの多言語対をまたいだ言語間チェックハーネス推定のための6つの手法を体系的に検討する。
以上の結果から,いくつかの言語対では,ゼロショットの言語間移動が可能であり,対象言語で訓練された単言語モデルに匹敵する性能が得られた。
論文 参考訳(メタデータ) (2022-11-09T18:18:53Z) - From Good to Best: Two-Stage Training for Cross-lingual Machine Reading
Comprehension [51.953428342923885]
モデル性能を向上させるための2段階のアプローチを開発する。
我々は、トップk予測が正確な答えを含む確率を最大化するために、ハードラーニング(HL)アルゴリズムを設計する。
第2段階では, 正解と他の候補との微妙な違いを学習するために, 解答を意識したコントラスト学習機構が開発された。
論文 参考訳(メタデータ) (2021-12-09T07:31:15Z) - Distributionally Robust Multilingual Machine Translation [94.51866646879337]
本稿では,分散的ロバストな最適化に基づくMNMT(Multilingual Neural Machine Translation)の新しい学習目標を提案する。
この目的を,反復的最適応答方式を用いて,大規模翻訳コーパスに対して実用的に最適化する方法を示す。
本手法は,多対一の翻訳設定と多対多の翻訳設定の両方において,平均と言語毎のパフォーマンスにおいて,強いベースライン法より一貫して優れる。
論文 参考訳(メタデータ) (2021-09-09T03:48:35Z) - On the Language Coverage Bias for Neural Machine Translation [81.81456880770762]
言語カバレッジバイアスは、ニューラルネットワーク翻訳(NMT)において重要である。
実験を慎重に設計することにより、トレーニングデータにおける言語カバレッジバイアスの包括的分析を行う。
本稿では,言語カバレッジバイアス問題を軽減するための,シンプルで効果的な2つのアプローチを提案する。
論文 参考訳(メタデータ) (2021-06-07T01:55:34Z) - Cross-lingual Machine Reading Comprehension with Language Branch
Knowledge Distillation [105.41167108465085]
言語間機械読解(CLMRC)は、ローソース言語に大規模なデータセットがないため、依然として難しい問題である。
本稿では,Language Branch Machine Reading (LBMRC) という新しい拡張手法を提案する。
LBMRCは、個々の言語に精通したMultiple Machine Read comprehension (MRC)モデルを訓練する。
複数の言語分岐モデルから全ての対象言語に対する単一モデルへのアマルガメート知識の多言語蒸留アプローチを考案する。
論文 参考訳(メタデータ) (2020-10-27T13:12:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。