論文の概要: MentalGLM Series: Explainable Large Language Models for Mental Health Analysis on Chinese Social Media
- arxiv url: http://arxiv.org/abs/2410.10323v1
- Date: Mon, 14 Oct 2024 09:29:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-29 22:24:32.204011
- Title: MentalGLM Series: Explainable Large Language Models for Mental Health Analysis on Chinese Social Media
- Title(参考訳): メンタルGLMシリーズ:中国のソーシャルメディアにおけるメンタルヘルス分析のための説明可能な大規模言語モデル
- Authors: Wei Zhai, Nan Bai, Qing Zhao, Jianqiang Li, Fan Wang, Hongzhi Qi, Meng Jiang, Xiaoqin Wang, Bing Xiang Yang, Guanghui Fu,
- Abstract要約: ブラックボックスモデルはタスクを切り替えるときに柔軟性がなく、その結果は説明に欠ける。
大きな言語モデル(LLM)の台頭とともに、その柔軟性はこの分野に新しいアプローチを導入した。
本稿では,9Kサンプルからなる中国初のマルチタスク・ソーシャル・メディア解釈型メンタルヘルス・インストラクション・データセットを提案する。
また,中国ソーシャルメディアをターゲットとしたメンタルヘルス分析を目的とした,初のオープンソースLCMであるMentalGLMシリーズモデルを提案する。
- 参考スコア(独自算出の注目度): 31.752563319585196
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As the prevalence of mental health challenges, social media has emerged as a key platform for individuals to express their emotions.Deep learning tends to be a promising solution for analyzing mental health on social media. However, black box models are often inflexible when switching between tasks, and their results typically lack explanations. With the rise of large language models (LLMs), their flexibility has introduced new approaches to the field. Also due to the generative nature, they can be prompted to explain decision-making processes. However, their performance on complex psychological analysis still lags behind deep learning. In this paper, we introduce the first multi-task Chinese Social Media Interpretable Mental Health Instructions (C-IMHI) dataset, consisting of 9K samples, which has been quality-controlled and manually validated. We also propose MentalGLM series models, the first open-source LLMs designed for explainable mental health analysis targeting Chinese social media, trained on a corpus of 50K instructions. The proposed models were evaluated on three downstream tasks and achieved better or comparable performance compared to deep learning models, generalized LLMs, and task fine-tuned LLMs. We validated a portion of the generated decision explanations with experts, showing promising results. We also evaluated the proposed models on a clinical dataset, where they outperformed other LLMs, indicating their potential applicability in the clinical field. Our models show strong performance, validated across tasks and perspectives. The decision explanations enhance usability and facilitate better understanding and practical application of the models. Both the constructed dataset and the models are publicly available via: https://github.com/zwzzzQAQ/MentalGLM.
- Abstract(参考訳): メンタルヘルスの課題が流行するにつれ、個人が感情を表現するための重要なプラットフォームとしてソーシャルメディアが登場し、ディープラーニングはソーシャルメディア上でメンタルヘルスを分析するための有望な解決策となる傾向にある。
しかしながら、ブラックボックスモデルはタスクを切り替えるときにしばしば柔軟性がなく、その結果は説明に欠ける。
大きな言語モデル(LLM)の台頭とともに、その柔軟性はこの分野に新しいアプローチを導入した。
また、生成性のため、意思決定プロセスを説明するよう促すことができる。
しかし、複雑な心理学的分析における彼らの業績は、いまだにディープラーニングに遅れを取っている。
本稿では、品質管理と手作業による検証を行う9Kサンプルからなる、初のマルチタスク中国ソーシャルメディア解釈メンタルヘルス指導(C-IMHI)データセットを紹介する。
また,中国ソーシャルメディアをターゲットとしたメンタルヘルス分析を目的とした,初のオープンソースLCMであるMentalGLMシリーズモデルも提案する。
提案したモデルは,3つの下流タスクで評価され,ディープラーニングモデル,一般化LLM,タスク微調整LLMよりも優れた性能を示した。
得られた意思決定説明の一部を専門家と検証し、有望な結果を示した。
また, 提案したモデルを臨床データセットで評価し, 他のLSMよりも優れ, 臨床分野への応用可能性を示した。
私たちのモデルは、タスクと視点にまたがって検証される、強力なパフォーマンスを示しています。
決定説明はユーザビリティを高め、モデルの理解と実践的応用を促進する。
構築されたデータセットとモデルの両方は、https://github.com/zwzzzQAQ/MentalGLMを介して公開されている。
関連論文リスト
- Neuron-based Personality Trait Induction in Large Language Models [115.08894603023712]
大規模言語モデル (LLM) は、様々な性格特性をシミュレートする能力が増している。
LLMにおけるパーソナリティ特性誘導のためのニューロンに基づくアプローチを提案する。
論文 参考訳(メタデータ) (2024-10-16T07:47:45Z) - Quantifying AI Psychology: A Psychometrics Benchmark for Large Language Models [57.518784855080334]
大きな言語モデル(LLM)は例外的なタスク解決能力を示しており、人間に似た役割を担っている。
本稿では,LLMにおける心理学的次元を調査するための枠組みとして,心理学的識別,評価データセットのキュレーション,結果検証による評価について述べる。
本研究では,個性,価値観,感情,心の理論,モチベーション,知性の6つの心理学的側面を網羅した総合的心理測定ベンチマークを導入する。
論文 参考訳(メタデータ) (2024-06-25T16:09:08Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
大規模言語モデル(LLM)は、問題解決と意思決定の能力の向上を示している。
本稿ではメタ推論技術を必要とするプロセスベースのベンチマークMR-Benを提案する。
メタ推論のパラダイムは,システム2のスロー思考に特に適しています。
論文 参考訳(メタデータ) (2024-06-20T03:50:23Z) - Using LLMs to Aid Annotation and Collection of Clinically-Enriched Data in Bipolar Disorder and Schizophrenia [9.804382916824245]
本稿では、メンタルヘルス研究の強化を目的としたシーケンシャル・ツー・シークエンス・タスクにおける現代言語モデルの応用について述べる。
そこで本研究では,小モデルにおいて,ドメイン固有の臨床変数のアノテーション,メンタルヘルス機器のデータ収集が可能であること,そして,より優れた商用大規模モデルの実現が期待できることを示す。
論文 参考訳(メタデータ) (2024-06-18T15:00:24Z) - Adapting Mental Health Prediction Tasks for Cross-lingual Learning via Meta-Training and In-context Learning with Large Language Model [3.3590922002216193]
モデルに依存しないメタラーニングと,このギャップに対処するために大規模言語モデル(LLM)を活用する。
まず,自己超越型メタラーニングモデルを適用し,迅速な適応と言語間移動のためのモデル初期化を改良する。
並行して、LLMのインコンテキスト学習機能を用いて、スワヒリのメンタルヘルス予測タスクにおけるパフォーマンスの精度を評価する。
論文 参考訳(メタデータ) (2024-04-13T17:11:35Z) - Learning to Generate Explainable Stock Predictions using Self-Reflective
Large Language Models [54.21695754082441]
説明可能なストック予測を生成するために,LLM(Large Language Models)を教えるフレームワークを提案する。
反射剤は自己推論によって過去の株価の動きを説明する方法を学ぶ一方、PPOトレーナーは最も可能性の高い説明を生成するためにモデルを訓練する。
我々のフレームワークは従来のディープラーニング法とLLM法の両方を予測精度とマシューズ相関係数で上回ることができる。
論文 参考訳(メタデータ) (2024-02-06T03:18:58Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
事前訓練された言語モデル(PLM)は、様々な自然言語処理タスクにおいて大きな進歩を遂げてきた。
ブラックボックスの性質による解釈可能性の欠如は、責任ある実装に課題をもたらす。
本研究では,人間にとって理解しやすい高レベルで有意義な概念を用いて,PLMを解釈する新しい手法を提案する。
論文 参考訳(メタデータ) (2023-11-08T20:41:18Z) - Explainable Depression Symptom Detection in Social Media [2.677715367737641]
本稿では, トランスフォーマーアーキテクチャを用いて, ユーザの文章中の抑うつ症状マーカーの出現を検知し, 説明する。
我々の自然言語による説明により、臨床医はバリデーションされた症状に基づいてモデルの判断を解釈できる。
論文 参考訳(メタデータ) (2023-10-20T17:05:27Z) - MentaLLaMA: Interpretable Mental Health Analysis on Social Media with
Large Language Models [28.62967557368565]
ソーシャルメディア上に,最初のマルチタスクおよびマルチソース解釈可能なメンタルヘルスインストラクションデータセットを構築した。
専門家が作成した数発のプロンプトとラベルを収集し,ChatGPTをプロンプトし,その応答から説明を得る。
IMHIデータセットとLLaMA2ファンデーションモデルに基づいて、メンタルヘルス分析のための最初のオープンソースLLMシリーズであるMentalLLaMAを訓練する。
論文 参考訳(メタデータ) (2023-09-24T06:46:08Z) - Automatically Correcting Large Language Models: Surveying the landscape
of diverse self-correction strategies [104.32199881187607]
大規模言語モデル(LLM)は、幅広いNLPタスクで顕著な性能を示した。
これらの欠陥を正すための有望なアプローチは自己補正であり、LLM自体が自身の出力で問題を修正するために誘導される。
本稿では,この新技術について概観する。
論文 参考訳(メタデータ) (2023-08-06T18:38:52Z) - Towards Interpretable Mental Health Analysis with Large Language Models [27.776003210275608]
大規模言語モデル(LLM)のメンタルヘルス分析と感情的推論能力は,5つのタスクにまたがる11のデータセット上で評価した。
本研究は, 精神保健分析のためのLCMについて, それぞれの意思決定に関する説明を提示するように指示することで, 解釈可能な精神保健分析を行う。
得られた説明の質を評価するために、厳密な人的評価を伝達し、163の人的評価による新しいデータセットを作成する。
論文 参考訳(メタデータ) (2023-04-06T19:53:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。