論文の概要: Pubic Symphysis-Fetal Head Segmentation Network Using BiFormer Attention Mechanism and Multipath Dilated Convolution
- arxiv url: http://arxiv.org/abs/2410.10352v2
- Date: Tue, 15 Oct 2024 02:56:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-29 22:04:40.559899
- Title: Pubic Symphysis-Fetal Head Segmentation Network Using BiFormer Attention Mechanism and Multipath Dilated Convolution
- Title(参考訳): Biformer Attention Mechanism と Multipath Dilated Convolution を用いたPubic Symphysis-Fetal Head Segmentation Network
- Authors: Pengzhou Cai, Lu Jiang, Yanxin Li, Xiaojuan Liu, Libin Lan,
- Abstract要約: 経ペリン超音波画像における胎児の頭頂部偏位は,胎児の頭頂部偏位と進行を評価する上で重要な役割を担っている。
超音波画像セグメンテーションのための動的でクエリ対応のスパースアテンション機構を提案する。
BRAU-Net という新しい手法を提案する。
- 参考スコア(独自算出の注目度): 6.673262517388075
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pubic symphysis-fetal head segmentation in transperineal ultrasound images plays a critical role for the assessment of fetal head descent and progression. Existing transformer segmentation methods based on sparse attention mechanism use handcrafted static patterns, which leads to great differences in terms of segmentation performance on specific datasets. To address this issue, we introduce a dynamic, query-aware sparse attention mechanism for ultrasound image segmentation. Specifically, we propose a novel method, named BRAU-Net to solve the pubic symphysis-fetal head segmentation task in this paper. The method adopts a U-Net-like encoder-decoder architecture with bi-level routing attention and skip connections, which effectively learns local-global semantic information. In addition, we propose an inverted bottleneck patch expanding (IBPE) module to reduce information loss while performing up-sampling operations. The proposed BRAU-Net is evaluated on FH-PS-AoP and HC18 datasets. The results demonstrate that our method could achieve excellent segmentation results. The code is available on GitHub.
- Abstract(参考訳): 経ペリン超音波画像における胎児の頭頂部偏位は,胎児の頭頂部偏位と進行を評価する上で重要な役割を担っている。
スパースアテンション機構に基づく既存のトランスフォーマーセグメンテーション手法では,手作りの静的パターンを用いることで,特定のデータセット上でのセグメンテーション性能に大きな違いが生じる。
この問題に対処するために,超音波画像セグメンテーションのための動的でクエリ対応のスパースアテンション機構を導入する。
具体的にはBRAU-Netと呼ばれる新しい手法を提案する。
U-Netライクなエンコーダ・デコーダアーキテクチャを採用し、双方向のルーティングアテンションと接続をスキップすることで、ローカル・グローバルなセマンティック情報を効果的に学習する。
さらに,情報損失を低減するために,逆ボトルネックパッチ拡張(IBPE)モジュールを提案する。
提案したBRAU-Netは、FH-PS-AoPおよびHC18データセットに基づいて評価される。
その結果,本手法は優れたセグメンテーション結果が得られることが示された。
コードはGitHubで入手できる。
関連論文リスト
- UnSeGArmaNet: Unsupervised Image Segmentation using Graph Neural Networks with Convolutional ARMA Filters [10.940349832919699]
事前学習したViTを用いた教師なしセグメンテーションフレームワークを提案する。
画像内に固有のグラフ構造を利用することにより,セグメント化における顕著な性能を実現する。
提案手法は,ベンチマーク画像セグメンテーションデータセット上での最先端性能(教師付き手法に匹敵する)を提供する。
論文 参考訳(メタデータ) (2024-10-08T15:10:09Z) - DiffCut: Catalyzing Zero-Shot Semantic Segmentation with Diffusion Features and Recursive Normalized Cut [62.63481844384229]
ファンデーションモデルは、言語、ビジョン、マルチモーダルタスクなど、さまざまな領域にまたがる強力なツールとして登場した。
本稿では,拡散UNetエンコーダを基礎ビジョンエンコーダとして使用し,教師なしゼロショットセグメンテーション手法であるDiffCutを紹介する。
我々の研究は、拡散UNetエンコーダに埋め込まれた極めて正確なセマンティック知識を強調し、下流タスクの基盤ビジョンエンコーダとして機能する。
論文 参考訳(メタデータ) (2024-06-05T01:32:31Z) - Pubic Symphysis-Fetal Head Segmentation Using Pure Transformer with Bi-level Routing Attention [6.709399356217316]
BRAU-Net という手法を提案し, 両性交感神経と胎児の頭部の分節課題を解決する。
U-Netのような純粋なトランスフォーマーアーキテクチャを採用し、双方向のルーティングアテンションと接続をスキップすることで、ローカル・グローバルなセマンティック情報を効果的に学習する。
論文 参考訳(メタデータ) (2023-09-30T07:45:50Z) - Interactive Segmentation as Gaussian Process Classification [58.44673380545409]
クリックベースのインタラクティブセグメンテーション(IS)は、ユーザインタラクション下で対象オブジェクトを抽出することを目的としている。
現在のディープラーニング(DL)ベースの手法のほとんどは、主にセマンティックセグメンテーションの一般的なパイプラインに従っている。
本稿では,各画像上でガウス過程(GP)に基づく画素単位のバイナリ分類モデルとしてISタスクを定式化することを提案する。
論文 参考訳(メタデータ) (2023-02-28T14:01:01Z) - Reducing Information Bottleneck for Weakly Supervised Semantic
Segmentation [17.979336178991083]
弱教師付きセマンティックセグメンテーションは、クラスラベルからピクセルレベルのローカライゼーションを生成する。
このようなラベルで訓練された分類器は、ターゲットオブジェクトの小さな識別領域に焦点を当てる可能性が高い。
本稿では,最後のアクティベーション関数を除去することで,情報のボトルネックを低減する手法を提案する。
さらに,非識別領域から分類への情報伝達をさらに促進する新たなプーリング手法を提案する。
論文 参考訳(メタデータ) (2021-10-13T06:49:45Z) - Boosting Few-shot Semantic Segmentation with Transformers [81.43459055197435]
TRansformer-based Few-shot Semantic segmentation Method (TRFS)
我々のモデルは,グローバル・エンハンスメント・モジュール(GEM)とローカル・エンハンスメント・モジュール(LEM)の2つのモジュールから構成される。
論文 参考訳(メタデータ) (2021-08-04T20:09:21Z) - Deep ensembles based on Stochastic Activation Selection for Polyp
Segmentation [82.61182037130406]
本研究は,大腸内視鏡検査における画像分割,特に正確なポリープ検出とセグメンテーションを扱う。
イメージセグメンテーションの基本アーキテクチャはエンコーダとデコーダで構成されている。
我々はデコーダのバックボーンを変更することで得られるDeepLabアーキテクチャのバリエーションを比較した。
論文 参考訳(メタデータ) (2021-04-02T02:07:37Z) - Self-Guided and Cross-Guided Learning for Few-Shot Segmentation [12.899804391102435]
単発セグメンテーションのための自己誘導学習手法を提案する。
注釈付き支持画像の初期予測を行うことにより、被覆および検出された前景領域を一次および補助支持ベクトルに符号化する。
プライマリサポートベクターと補助サポートベクターの両方を集約することで、クエリイメージ上でより良いセグメンテーション性能が得られます。
論文 参考訳(メタデータ) (2021-03-30T07:36:41Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z) - Boundary-assisted Region Proposal Networks for Nucleus Segmentation [89.69059532088129]
大量の核が混在しているため、機械学習モデルはうまく機能しない。
我々は、堅牢なインスタンスレベルの核分割を実現する境界支援領域提案ネットワーク(BRP-Net)を考案する。
論文 参考訳(メタデータ) (2020-06-04T08:26:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。