Achieving Optimal Breakdown for Byzantine Robust Gossip
- URL: http://arxiv.org/abs/2410.10418v1
- Date: Mon, 14 Oct 2024 12:10:52 GMT
- Title: Achieving Optimal Breakdown for Byzantine Robust Gossip
- Authors: Renaud Gaucher, Aymeric Dieuleveut, Hadrien Hendrikx,
- Abstract summary: This paper investigates Byzantine-resilient algorithms in a decentralized setting, where devices communicate directly with one another.
We introduce $mathrmCG+$, an algorithm at the intersection of $mathrmClippedGossip$ and $mathrmNNA$, two popular approaches for robust decentralized learning.
- Score: 15.69624587054777
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Distributed approaches have many computational benefits, but they are vulnerable to attacks from a subset of devices transmitting incorrect information. This paper investigates Byzantine-resilient algorithms in a decentralized setting, where devices communicate directly with one another. We investigate the notion of breakdown point, and show an upper bound on the number of adversaries that decentralized algorithms can tolerate. We introduce $\mathrm{CG}^+$, an algorithm at the intersection of $\mathrm{ClippedGossip}$ and $\mathrm{NNA}$, two popular approaches for robust decentralized learning. $\mathrm{CG}^+$ meets our upper bound, and thus obtains optimal robustness guarantees, whereas neither of the existing two does. We provide experimental evidence for this gap by presenting an attack tailored to sparse graphs which breaks $\mathrm{NNA}$ but against which $\mathrm{CG}^+$ is robust.
Related papers
- Stochastic Bandits Robust to Adversarial Attacks [33.278131584647745]
This paper investigates multi-armed bandit algorithms that are robust to adversarial attacks.
We study two cases of this model, with or without the knowledge of an attack budget $C$.
We devise two types of algorithms with regret bounds having additive or multiplicative $C$ dependence terms.
arXiv Detail & Related papers (2024-08-16T17:41:35Z) - Best-of-Both-Worlds Algorithms for Linear Contextual Bandits [11.94312915280916]
We study best-of-both-worlds algorithms for $K$-armed linear contextual bandits.
Our algorithms deliver near-optimal regret bounds in both the adversarial and adversarial regimes.
arXiv Detail & Related papers (2023-12-24T08:27:30Z) - Efficient Algorithms for Generalized Linear Bandits with Heavy-tailed
Rewards [40.99322897009357]
We propose two novel algorithms based on truncation and mean of medians.
Our truncation-based algorithm supports online learning, distinguishing it from existing truncation-based approaches.
Our algorithms improve the regret bounds by a logarithmic factor compared to existing algorithms when $epsilon=1$.
arXiv Detail & Related papers (2023-10-28T13:01:10Z) - Differentially-Private Hierarchical Clustering with Provable
Approximation Guarantees [79.59010418610625]
We study differentially private approximation algorithms for hierarchical clustering.
We show strong lower bounds for the problem: that any $epsilon$-DP algorithm must exhibit $O(|V|2/ epsilon)$-additive error for an input dataset.
We propose a private $1+o(1)$ approximation algorithm which also recovers the blocks exactly.
arXiv Detail & Related papers (2023-01-31T19:14:30Z) - An Optimal Stochastic Algorithm for Decentralized Nonconvex Finite-sum
Optimization [25.21457349137344]
We show a proof to show DEAREST requires at most $mathcal O(+sqrtmnLvarepsilon-2)$ first-order oracle (IFO) calls and $mathcal O(Lvarepsilon-2/sqrt1-lambda_W)$ communication rounds.
arXiv Detail & Related papers (2022-10-25T11:37:11Z) - Minimax Rates for Robust Community Detection [19.229475414802213]
We study the problem of community detection in the block model with adversarial node corruptions.
Our main result is an efficient algorithm that can tolerate an $epsilon$-fraction of corruptions and unbounded error $O(epsilon) + e-fracC2 (1 pm o(1))$ where $C = (sqrta - sqrtb)2$ is the signal-to-noise ratio.
We show that our algorithms are doubly-robust in the sense that they work in an even more
arXiv Detail & Related papers (2022-07-25T04:45:16Z) - Linear Contextual Bandits with Adversarial Corruptions [91.38793800392108]
We study the linear contextual bandit problem in the presence of adversarial corruption.
We present a variance-aware algorithm that is adaptive to the level of adversarial contamination $C$.
arXiv Detail & Related papers (2021-10-25T02:53:24Z) - Distributed Saddle-Point Problems Under Similarity [173.19083235638104]
We show that a given suboptimality $epsilon0$ is achieved master/workers networks in $Omegabig.
We then propose algorithms matching the lower bounds either types of networks (up to log-overs)
We assess effectiveness of the proposed algorithms on a robust logistic regression problem.
arXiv Detail & Related papers (2021-07-22T14:25:16Z) - Provable Robustness of Adversarial Training for Learning Halfspaces with
Noise [95.84614821570283]
We analyze the properties of adversarial learning adversarially robust halfspaces in the presence of label noise.
To the best of our knowledge, this is the first work to show that adversarial training prov yields classifiers in noise.
arXiv Detail & Related papers (2021-04-19T16:35:38Z) - Byzantine-Resilient Non-Convex Stochastic Gradient Descent [61.6382287971982]
adversary-resilient distributed optimization, in which.
machines can independently compute gradients, and cooperate.
Our algorithm is based on a new concentration technique, and its sample complexity.
It is very practical: it improves upon the performance of all prior methods when no.
setting machines are present.
arXiv Detail & Related papers (2020-12-28T17:19:32Z) - Taking a hint: How to leverage loss predictors in contextual bandits? [63.546913998407405]
We study learning in contextual bandits with the help of loss predictors.
We show that the optimal regret is $mathcalO(minsqrtT, sqrtmathcalETfrac13)$ when $mathcalE$ is known.
arXiv Detail & Related papers (2020-03-04T07:36:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.