Diversity-Aware Reinforcement Learning for de novo Drug Design
- URL: http://arxiv.org/abs/2410.10431v1
- Date: Mon, 14 Oct 2024 12:25:23 GMT
- Title: Diversity-Aware Reinforcement Learning for de novo Drug Design
- Authors: Hampus Gummesson Svensson, Christian Tyrchan, Ola Engkvist, Morteza Haghir Chehreghani,
- Abstract summary: Fine-tuning a pre-trained generative model has demonstrated good performance in generating promising drug molecules.
No study has examined how different adaptive update mechanisms for the reward function influence the diversity of generated molecules.
Our experiments reveal that combining structure- and prediction-based methods generally yields better results in terms of molecular diversity.
- Score: 2.356290293311623
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fine-tuning a pre-trained generative model has demonstrated good performance in generating promising drug molecules. The fine-tuning task is often formulated as a reinforcement learning problem, where previous methods efficiently learn to optimize a reward function to generate potential drug molecules. Nevertheless, in the absence of an adaptive update mechanism for the reward function, the optimization process can become stuck in local optima. The efficacy of the optimal molecule in a local optimization may not translate to usefulness in the subsequent drug optimization process or as a potential standalone clinical candidate. Therefore, it is important to generate a diverse set of promising molecules. Prior work has modified the reward function by penalizing structurally similar molecules, primarily focusing on finding molecules with higher rewards. To date, no study has comprehensively examined how different adaptive update mechanisms for the reward function influence the diversity of generated molecules. In this work, we investigate a wide range of intrinsic motivation methods and strategies to penalize the extrinsic reward, and how they affect the diversity of the set of generated molecules. Our experiments reveal that combining structure- and prediction-based methods generally yields better results in terms of molecular diversity.
Related papers
- Fragment-Masked Molecular Optimization [37.20936761888007]
We propose a fragment-masked molecular optimization method based on phenotypic drug discovery (PDD)
PDD-based molecular optimization can reduce potential safety risks while optimizing phenotypic activity, thereby increasing the likelihood of clinical success.
The overall experiments demonstrate that the in-silico optimization success rate reaches 94.4%, with an average efficacy increase of 5.3%.
arXiv Detail & Related papers (2024-08-17T06:00:58Z) - Aligning Target-Aware Molecule Diffusion Models with Exact Energy Optimization [147.7899503829411]
AliDiff is a novel framework to align pretrained target diffusion models with preferred functional properties.
It can generate molecules with state-of-the-art binding energies with up to -7.07 Avg. Vina Score.
arXiv Detail & Related papers (2024-07-01T06:10:29Z) - Multi-objective Molecular Optimization for Opioid Use Disorder Treatment
Using Generative Network Complex [5.33208055504216]
Opioid Use Disorder (OUD) has emerged as a significant global health issue.
In this study, we propose a deep generative model that combines a differential equation (SDE)-based diffusion modeling with the latent space of a pretrained autoencoder model.
The molecular generator enables efficient generation of molecules that are effective on multiple targets.
arXiv Detail & Related papers (2023-06-13T01:12:31Z) - Molecule optimization via multi-objective evolutionary in implicit
chemical space [8.72872397589296]
MOMO is a multi-objective molecule optimization framework to address the challenge by combining learning of chemical knowledge with multi-objective evolutionary search.
We demonstrate the high performance of MOMO on four multi-objective property and similarity optimization tasks, and illustrate the search capability of MOMO through case studies.
arXiv Detail & Related papers (2022-12-17T09:09:23Z) - Exploring Chemical Space with Score-based Out-of-distribution Generation [57.15855198512551]
We propose a score-based diffusion scheme that incorporates out-of-distribution control in the generative differential equation (SDE)
Since some novel molecules may not meet the basic requirements of real-world drugs, MOOD performs conditional generation by utilizing the gradients from a property predictor.
We experimentally validate that MOOD is able to explore the chemical space beyond the training distribution, generating molecules that outscore ones found with existing methods, and even the top 0.01% of the original training pool.
arXiv Detail & Related papers (2022-06-06T06:17:11Z) - Molecular Attributes Transfer from Non-Parallel Data [57.010952598634944]
We formulate molecular optimization as a style transfer problem and present a novel generative model that could automatically learn internal differences between two groups of non-parallel data.
Experiments on two molecular optimization tasks, toxicity modification and synthesizability improvement, demonstrate that our model significantly outperforms several state-of-the-art methods.
arXiv Detail & Related papers (2021-11-30T06:10:22Z) - Differentiable Scaffolding Tree for Molecular Optimization [47.447362691543304]
We propose differentiable scaffolding tree (DST) that utilizes a learned knowledge network to convert discrete chemical structures to locally differentiable ones.
Our empirical studies show the gradient-based molecular optimizations are both effective and sample efficient.
arXiv Detail & Related papers (2021-09-22T01:16:22Z) - Realistic molecule optimization on a learned graph manifold [4.640835690336652]
We show that learned realism sampling produces empirically more realistic molecules and outperforms all recent baselines in the task of molecule optimization with similarity constraints.
In this work we use a hybrid approach, where the dataset distribution is learned using an autoregressive model while the score optimization is done using the Metropolis algorithm.
arXiv Detail & Related papers (2021-06-03T07:39:35Z) - Optimizing Molecules using Efficient Queries from Property Evaluations [66.66290256377376]
We propose QMO, a generic query-based molecule optimization framework.
QMO improves the desired properties of an input molecule based on efficient queries.
We show that QMO outperforms existing methods in the benchmark tasks of optimizing small organic molecules.
arXiv Detail & Related papers (2020-11-03T18:51:18Z) - MIMOSA: Multi-constraint Molecule Sampling for Molecule Optimization [51.00815310242277]
generative models and reinforcement learning approaches made initial success, but still face difficulties in simultaneously optimizing multiple drug properties.
We propose the MultI-constraint MOlecule SAmpling (MIMOSA) approach, a sampling framework to use input molecule as an initial guess and sample molecules from the target distribution.
arXiv Detail & Related papers (2020-10-05T20:18:42Z) - Molecular Design in Synthetically Accessible Chemical Space via Deep
Reinforcement Learning [0.0]
We argue that existing generative methods are limited in their ability to favourably shift the distributions of molecular properties during optimization.
We propose a novel Reinforcement Learning framework for molecular design in which an agent learns to directly optimize through a space of synthetically-accessible drug-like molecules.
arXiv Detail & Related papers (2020-04-29T16:29:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.