論文の概要: Model-Based Differentially Private Knowledge Transfer for Large Language Models
- arxiv url: http://arxiv.org/abs/2410.10481v1
- Date: Mon, 14 Oct 2024 13:18:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 21:24:58.621449
- Title: Model-Based Differentially Private Knowledge Transfer for Large Language Models
- Title(参考訳): 大規模言語モデルに対するモデルベース差分的知識伝達
- Authors: Zhaomin Wu, Jizhou Guo, Junyi Hou, Bingsheng He, Lixin Fan, Qiang Yang,
- Abstract要約: プライバシ保護,ドメイン固有モデルを大規模言語モデルに統合するフレームワークである textitLlamdex を提案する。
提案手法はドメイン固有のタスクの精度を大幅に向上させ,既存手法と比較して最大26%の改善を実現した。
- 参考スコア(独自算出の注目度): 34.949731264918846
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As large language models (LLMs) become increasingly prevalent in web services, effectively leveraging domain-specific knowledge while ensuring privacy has become critical. Existing methods, such as retrieval-augmented generation (RAG) and differentially private data synthesis, often compromise either the utility of domain knowledge or the privacy of sensitive data, limiting their applicability in specialized domains. To address these challenges, we propose \textit{Llamdex}, a novel framework that integrates privacy-preserving, domain-specific models into LLMs. Our approach significantly enhances the accuracy of domain-specific tasks, achieving up to a 26\% improvement compared to existing methods under the same differential privacy constraints. Experimental results show that Llamdex not only improves the accuracy of LLM responses but also maintains comparable inference efficiency to the original LLM, highlighting its potential for real-world applications.
- Abstract(参考訳): 大規模言語モデル(LLM)がWebサービスでますます普及するにつれて、ドメイン固有の知識を効果的に活用し、プライバシの確保が重要になっている。
検索強化生成(RAG)や微分プライベートなデータ合成といった既存の手法は、ドメイン知識の実用性や機密データのプライバシーを損なうことが多く、特定のドメインにおける適用性を制限している。
これらの課題に対処するために、プライバシ保護、ドメイン固有のモデルをLLMに統合する新しいフレームワークである「textit{Llamdex}」を提案する。
提案手法はドメイン固有のタスクの精度を大幅に向上させ,同一の差分プライバシー制約下での既存手法と比較して最大26倍の改善を実現した。
実験の結果,Llamdex は LLM 応答の精度を向上するだけでなく,従来の LLM に匹敵する推論効率も維持し,実世界の応用の可能性を強調した。
関連論文リスト
- Learning Obfuscations Of LLM Embedding Sequences: Stained Glass Transform [1.8749305679160366]
我々は、AIモデルの単語埋め込みの学習されたシーケンス依存的な変換であるStained Glass Transformを紹介する。
我々は、相互情報に基づいて、事後プライバシ推定を算出し、変換された埋め込みのインスタンスのプライバシと実用性を検証する。
論文 参考訳(メタデータ) (2025-06-11T06:56:12Z) - A General Pseudonymization Framework for Cloud-Based LLMs: Replacing Privacy Information in Controlled Text Generation [0.6699777383856287]
ChatGPTサービスはクラウドベースの大規模言語モデル(LLM)を活用する
プライバシの懸念は、モデルプロバイダによってプロンプトが送信され、処理されるときに生じる。
クラウドベースのLCMに適用可能な一般的な擬似化フレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-21T06:15:53Z) - LLM-Lasso: A Robust Framework for Domain-Informed Feature Selection and Regularization [59.75242204923353]
LLM-Lassoは大規模言語モデル(LLM)を利用してラッソ回帰における特徴選択を導くフレームワークである。
LLMは各特徴に対してペナルティ因子を生成し、単純でチューニング可能なモデルを用いてラスソペナルティの重みに変換される。
LLMによりより関連づけられた特徴は、より低い罰を受け、最終モデルに保持される可能性を高める。
論文 参考訳(メタデータ) (2025-02-15T02:55:22Z) - A Practical and Privacy-Preserving Framework for Real-World Large Language Model Services [8.309281698695381]
大規模言語モデル(LLM)は、テキスト理解と生成において例外的な能力を示した。
個人はしばしばLLM企業が提供するオンラインAI・アズ・ア・サービス(AI)に依存している。
このビジネスモデルは、サービスプロバイダがユーザのトレースパターンや行動データを悪用する可能性があるため、重大なプライバシー上のリスクをもたらす。
本稿では,サービスプロバイダが要求を提出した個人にリンクさせることを防止し,ユーザの匿名性を確保するための実用的かつプライバシ保護フレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-03T07:40:28Z) - FedSpaLLM: Federated Pruning of Large Language Models [8.45879077052023]
大規模言語モデル(LLM)は最先端のパフォーマンスを実現するが、高い計算量とストレージ要求のためデプロイは困難である。
我々は,LLMの刈り取り専用に設計された最初のフェデレーション学習フレームワークであるFedSpaLLMを提案する。
論文 参考訳(メタデータ) (2024-10-18T20:33:12Z) - Exploring Language Model Generalization in Low-Resource Extractive QA [57.14068405860034]
ドメインドリフト下でのLarge Language Models (LLM) を用いた抽出質問応答(EQA)について検討する。
パフォーマンスギャップを実証的に説明するための一連の実験を考案する。
論文 参考訳(メタデータ) (2024-09-27T05:06:43Z) - Robust Utility-Preserving Text Anonymization Based on Large Language Models [80.5266278002083]
テキストの匿名化は、プライバシーを維持しながら機密データを共有するために重要である。
既存の技術は、大規模言語モデルの再識別攻撃能力の新たな課題に直面している。
本稿では,3つのLCMベースコンポーネント – プライバシ評価器,ユーティリティ評価器,最適化コンポーネント – で構成されるフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-16T14:28:56Z) - FedBiOT: LLM Local Fine-tuning in Federated Learning without Full Model [48.33280660752336]
大規模言語モデル(LLM)は、適切なデータで微調整した後、多くのドメイン固有のタスクで素晴らしいパフォーマンスを示す。
多くのドメイン固有のデータは、プライベートに複数の所有者に分散される。
我々は,フェデレート学習のための資源効率の高いLLM微調整手法であるFedBiOTを紹介する。
論文 参考訳(メタデータ) (2024-06-25T16:45:47Z) - Self-Augmented Preference Optimization: Off-Policy Paradigms for Language Model Alignment [104.18002641195442]
既存のペアデータを必要としない、効果的でスケーラブルなトレーニングパラダイムである自己拡張型優先度最適化(SAPO)を導入する。
負の反応を自律的に生成するセルフプレイの概念に基づいて、我々はさらに、データ探索とエクスプロイトを強化するために、非政治的な学習パイプラインを組み込む。
論文 参考訳(メタデータ) (2024-05-31T14:21:04Z) - Federated Domain-Specific Knowledge Transfer on Large Language Models Using Synthetic Data [53.70870879858533]
フェデレートされたドメイン固有の知識伝達フレームワークを紹介する。
クライアントのデータプライバシを保護しながら、LLMからSLMへのドメイン固有の知識転送を可能にする。
提案されたFDKTフレームワークは、プライバシー予算が10未満のSLMのタスクパフォーマンスを約5%改善する。
論文 参考訳(メタデータ) (2024-05-23T06:14:35Z) - BLADE: Enhancing Black-box Large Language Models with Small Domain-Specific Models [56.89958793648104]
大規模言語モデル(LLM)は多用途であり、多様なタスクに対処することができる。
従来のアプローチでは、ドメイン固有のデータによる継続的な事前トレーニングを行うか、一般的なLLMをサポートするために検索拡張を採用する。
BLADEと呼ばれる新しいフレームワークを提案する。このフレームワークは、小さなDomain-spEcificモデルでブラックボックスのLArge言語モデルを拡張する。
論文 参考訳(メタデータ) (2024-03-27T08:57:21Z) - Dial-insight: Fine-tuning Large Language Models with High-Quality Domain-Specific Data Preventing Capability Collapse [4.98050508891467]
高品質なデータを得るために設計された生産プロンプトを構築するための2段階のアプローチを提案する。
この方法は、幅広いタスクを包含し、多種多様な表現を示す多様なプロンプトの生成を含む。
生成したラベルデータの整合性を確保するため,コスト効率,多次元品質評価フレームワークを導入する。
論文 参考訳(メタデータ) (2024-03-14T08:27:32Z) - A Framework for Cost-Effective and Self-Adaptive LLM Shaking and
Recovery Mechanism [33.330424243007265]
我々は,CypherTalk という,費用対効果と自己適応性を備えた LLM 揺らぎチューニングとリカバリ機構を導入する。
水平および垂直の揺動演算子を慎重に設計することにより、SOTAのプライバシー保護型LLMスキームと同等の精度が得られる。
また、CypherTalkフレームワークでは、最適化された揺動演算子設定を使用すると、信頼性の高い精度が得られる。
論文 参考訳(メタデータ) (2024-03-12T03:30:04Z) - PANDA: Preference Adaptation for Enhancing Domain-Specific Abilities of LLMs [49.32067576992511]
大規模言語モデルは、しばしばドメイン固有の最先端モデルによって達成されるパフォーマンスに欠ける。
LLMのドメイン固有の機能を強化する1つの潜在的アプローチは、対応するデータセットを使用してそれらを微調整することである。
LLM(PANDA)のドメイン固有能力を高めるための優先度適応法を提案する。
実験の結果,PANDA はテキスト分類や対話型意思決定タスクにおいて LLM のドメイン固有性を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2024-02-20T09:02:55Z) - Differentially Private Low-Rank Adaptation of Large Language Model Using Federated Learning [32.52811740662061]
本稿では,大規模言語モデル(LLM)に適した新しいフェデレーション学習アルゴリズムDP-LoRAを紹介する。
DP-LoRAは、重み付け更新のノイズを追加し、データプライバシを個別に維持しつつ、協調的なモデルトレーニングを容易にするガウス機構を使用することで、データのプライバシを保存する。
論文 参考訳(メタデータ) (2023-12-29T06:50:38Z) - DP-OPT: Make Large Language Model Your Privacy-Preserving Prompt Engineer [57.04801796205638]
大きな言語モデル(LLM)は、様々なタスクのための支配的なツールとして現れています。
しかし、データプライバシに関する懸念は、調整されたプロンプトが機密情報に依存しているため、障害となる。
本稿では,DP-OPT(Dis Differentially-Private Offsite Prompt Tuning)を提案する。
論文 参考訳(メタデータ) (2023-11-27T02:01:10Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
コンテキストプライバシ保護言語モデル(PrivacyMind)を紹介する。
我々の研究はモデル設計に関する理論的分析を提供し、様々な手法をベンチマークする。
特に、肯定的な例と否定的な例の両方による命令チューニングは、有望な方法である。
論文 参考訳(メタデータ) (2023-10-03T22:37:01Z) - Augmented Large Language Models with Parametric Knowledge Guiding [72.71468058502228]
大規模言語モデル(LLM)は、言語理解と生成能力に優れた自然言語処理(NLP)を備えています。
それらのパフォーマンスは、関連するデータへの限られた露出のために専門的な知識を必要とするドメイン固有のタスクに最適であるかもしれない。
本稿では,LLMに関連知識にアクセスするための知識誘導モジュールを組み込んだ新しいPKGフレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-08T15:05:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。