Hybrid Transformer for Early Alzheimer's Detection: Integration of Handwriting-Based 2D Images and 1D Signal Features
- URL: http://arxiv.org/abs/2410.10547v1
- Date: Mon, 14 Oct 2024 14:26:52 GMT
- Title: Hybrid Transformer for Early Alzheimer's Detection: Integration of Handwriting-Based 2D Images and 1D Signal Features
- Authors: Changqing Gong, Huafeng Qin, Mounîm A. El-Yacoubi,
- Abstract summary: Alzheimer's Disease (AD) is a prevalent neurodegenerative condition where early detection is vital.
Handwriting, often affected early in AD, offers a non-invasive and cost-effective way to capture subtle motor changes.
We propose a learnable multimodal hybrid attention model that integrates simultaneously 2D handwriting images with 1D dynamic handwriting signals.
Our model achieved state-of-the-art performance on the DARWIN dataset, with an F1-score of 90.32% and accuracy of 90.91% in Task 8 ('L' writing)
- Score: 2.606124959056959
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Alzheimer's Disease (AD) is a prevalent neurodegenerative condition where early detection is vital. Handwriting, often affected early in AD, offers a non-invasive and cost-effective way to capture subtle motor changes. State-of-the-art research on handwriting, mostly online, based AD detection has predominantly relied on manually extracted features, fed as input to shallow machine learning models. Some recent works have proposed deep learning (DL)-based models, either 1D-CNN or 2D-CNN architectures, with performance comparing favorably to handcrafted schemes. These approaches, however, overlook the intrinsic relationship between the 2D spatial patterns of handwriting strokes and their 1D dynamic characteristics, thus limiting their capacity to capture the multimodal nature of handwriting data. Moreover, the application of Transformer models remains basically unexplored. To address these limitations, we propose a novel approach for AD detection, consisting of a learnable multimodal hybrid attention model that integrates simultaneously 2D handwriting images with 1D dynamic handwriting signals. Our model leverages a gated mechanism to combine similarity and difference attention, blending the two modalities and learning robust features by incorporating information at different scales. Our model achieved state-of-the-art performance on the DARWIN dataset, with an F1-score of 90.32\% and accuracy of 90.91\% in Task 8 ('L' writing), surpassing the previous best by 4.61% and 6.06% respectively.
Related papers
- Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - Contrastive Transformer Learning with Proximity Data Generation for
Text-Based Person Search [60.626459715780605]
Given a descriptive text query, text-based person search aims to retrieve the best-matched target person from an image gallery.
Such a cross-modal retrieval task is quite challenging due to significant modality gap, fine-grained differences and insufficiency of annotated data.
In this paper, we propose a simple yet effective dual Transformer model for text-based person search.
arXiv Detail & Related papers (2023-11-15T16:26:49Z) - 1D-Convolutional transformer for Parkinson disease diagnosis from gait [7.213855322671065]
This paper presents an efficient deep neural network model for diagnosing Parkinson's disease from gait.
We introduce a hybrid ConvNetTransform-er architecture to accurately diagnose the disease by detecting the severity stage.
Our experimental results show that our approach is effective for detecting the different stages of Parkinson's disease from gait data.
arXiv Detail & Related papers (2023-11-06T15:17:17Z) - Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
We present AdaSyn, a framework for domain adaptive synapse detection with weak point annotations.
In the WASPSYN challenge at I SBI 2023, our method ranks the 1st place.
arXiv Detail & Related papers (2023-08-31T05:05:53Z) - Context-aware attention layers coupled with optimal transport domain
adaptation and multimodal fusion methods for recognizing dementia from
spontaneous speech [0.0]
Alzheimer's disease (AD) constitutes a complex neurocognitive disease and is the main cause of dementia.
We propose some new methods for detecting AD patients, which capture the intra- and cross-modal interactions.
Experiments conducted on the ADReSS and ADReSSo Challenge indicate the efficacy of our introduced approaches over existing research initiatives.
arXiv Detail & Related papers (2023-05-25T18:18:09Z) - Adapting the Mean Teacher for keypoint-based lung registration under
geometric domain shifts [75.51482952586773]
deep neural networks generally require plenty of labeled training data and are vulnerable to domain shifts between training and test data.
We present a novel approach to geometric domain adaptation for image registration, adapting a model from a labeled source to an unlabeled target domain.
Our method consistently improves on the baseline model by 50%/47% while even matching the accuracy of models trained on target data.
arXiv Detail & Related papers (2022-07-01T12:16:42Z) - Multi-Modal Hypergraph Diffusion Network with Dual Prior for Alzheimer
Classification [4.179845212740817]
We introduce a novel semi-supervised hypergraph learning framework for Alzheimer's disease diagnosis.
Our framework allows for higher-order relations among multi-modal imaging and non-imaging data.
We demonstrate, through our experiments, that our framework is able to outperform current techniques for Alzheimer's disease diagnosis.
arXiv Detail & Related papers (2022-04-04T10:31:42Z) - Voxelmorph++ Going beyond the cranial vault with keypoint supervision
and multi-channel instance optimisation [8.88841928746097]
Recent Learn2Reg benchmark shows single-scale U-Net architectures fall short of state-of-the-art performance for abdominal or intra-patient lung registration.
Here, we propose two straightforward steps that greatly reduce this gap in accuracy.
First, we employ keypoint self-supervision with a novel network head that predicts a discretised heatmap.
Second, we replace multiple learned fine-tuning steps by a single instance with hand-crafted features and the Adam optimiser.
arXiv Detail & Related papers (2022-02-28T19:23:29Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Sequence-based Dynamic Handwriting Analysis for Parkinson's Disease
Detection with One-dimensional Convolutions and BiGRUs [5.936804438746453]
Parkinsons disease (PD) is commonly characterized by several motor symptoms such as bradykinesia akinesia, rigidity, and tremor.
The analysis of patients' fine motor control, particularly handwriting, is a powerful tool to support PD assessment.
This paper proposes a novel classification model based on one-directional convolutions and Bi Gated Recurrent Units (GRUs)
arXiv Detail & Related papers (2021-01-23T09:25:13Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
We use 3D convolutional autoencoders to build the domain irrelevant latent space image representation and demonstrate this method to outperform existing approaches on ABIDE data.
arXiv Detail & Related papers (2020-10-14T16:50:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.