論文の概要: Test smells in LLM-Generated Unit Tests
- arxiv url: http://arxiv.org/abs/2410.10628v2
- Date: Thu, 06 Nov 2025 10:08:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-07 20:17:53.073417
- Title: Test smells in LLM-Generated Unit Tests
- Title(参考訳): LLM生成ユニットテストにおけるテスト臭
- Authors: Wendkûuni C. Ouédraogo, Yinghua Li, Xueqi Dang, Xunzhu Tang, Anil Koyuncu, Jacques Klein, David Lo, Tegawendé F. Bissyandé,
- Abstract要約: 本稿では, LLM 生成単体試験におけるテスト臭拡散の大規模解析法として, マルチベンチマークを初めて提案する。
本研究では,4つのLCM(GPT-3.5,GPT-4,Mistral 7B,Mixtral 8x7B)から20,505のクラスレベルスイート,TestBenchから972のメソッドレベルケース,14,469のEvoSuiteテスト,34,635のオープンソースJavaプロジェクトから779,585の人書きテストについて検討した。
- 参考スコア(独自算出の注目度): 16.061139428298986
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: LLMs promise to transform unit test generation from a manual burden into an automated solution. Yet, beyond metrics such as compilability or coverage, little is known about the quality of LLM-generated tests, particularly their susceptibility to test smells, design flaws that undermine readability and maintainability. This paper presents the first multi-benchmark, large-scale analysis of test smell diffusion in LLM-generated unit tests. We contrast LLM outputs with human-written suites (as the reference for real-world practices) and SBST-generated tests from EvoSuite (as the automated baseline), disentangling whether LLMs reproduce human-like flaws or artifacts of synthetic generation. Our study draws on 20,505 class-level suites from four LLMs (GPT-3.5, GPT-4, Mistral 7B, Mixtral 8x7B), 972 method-level cases from TestBench, 14,469 EvoSuite tests, and 779,585 human-written tests from 34,635 open-source Java projects. Using two complementary detection tools (TsDetect and JNose), we analyze prevalence, co-occurrence, and correlations with software attributes and generation parameters. Results show that LLM-generated tests consistently manifest smells such as Assertion Roulette and Magic Number Test, with patterns strongly influenced by prompting strategy, context length, and model scale. Comparisons reveal overlaps with human-written tests, raising concerns of potential data leakage from training corpora while EvoSuite exhibits distinct, generator-specific flaws. These findings highlight both the promise and the risks of LLM-based test generation, and call for the design of smell-aware generation frameworks, prompt engineering strategies, and enhanced detection tools to ensure maintainable, high-quality test code.
- Abstract(参考訳): LLMは、ユニットテスト生成を手作業による負担から自動化されたソリューションに変換することを約束します。
しかし、コンパイル可能性やカバレッジといったメトリクス以外にも、LLM生成テストの品質、特にテストの臭いへの感受性、可読性と保守性を損なう設計上の欠陥についてはほとんど知られていない。
本稿では, LLM 生成単体試験におけるテスト臭拡散の大規模解析法として, マルチベンチマークを初めて提案する。
実世界の実践の参考として) LLM出力とEvoSuite(自動ベースライン)からのSBST生成テストとを対比し, LLMが人為的な欠陥や合成生成の成果物を再現するかどうかを議論する。
本研究では,4つのLCM(GPT-3.5,GPT-4,Mistral 7B,Mixtral 8x7B)から20,505のクラスレベルスイート,TestBenchから972のメソッドレベルケース,14,469のEvoSuiteテスト,34,635のオープンソースJavaプロジェクトから779,585の人書きテストについて検討した。
2つの補完的検出ツール(TsDetectとJNose)を用いて、ソフトウェア属性と生成パラメータとの有病率、共起、相関を解析する。
その結果, LLM 生成試験は, Assertion Roulette や Magic Number Test などの匂いが常に現れ, パターンは戦略, 文脈長, モデルスケールに強く影響していることがわかった。
比較では、人間によるテストと重複し、トレーニングコーパスから潜在的なデータ漏洩の懸念が高まる一方、EvoSuiteは別個のジェネレータ固有の欠陥を示す。
これらの知見は、LCMベースのテスト生成の約束とリスクの両方を強調し、臭気を意識した生成フレームワークの設計、エンジニアリング戦略の促進、メンテナンス可能な高品質なテストコードを保証するための検出ツールの強化を要求している。
関連論文リスト
- YATE: The Role of Test Repair in LLM-Based Unit Test Generation [22.67442101368384]
本稿では,ルールベースの静的解析と再試行を組み合わせることで,これらの不正なテストのいくつかを修復する手法を提案する。
このシンプルなアプローチであるYATEを、6つのオープンソースプロジェクトのセットで評価する。
YATEは22%のラインカバレッジ、20%のブランチカバレッジ、20%のミュータントを同等のコストで削減する。
論文 参考訳(メタデータ) (2025-07-24T11:32:31Z) - ProjectTest: A Project-level LLM Unit Test Generation Benchmark and Impact of Error Fixing Mechanisms [48.43237545197775]
単体テスト生成はLLMの有望かつ重要なユースケースとなっている。
ProjectTestは、Python、Java、JavaScriptをカバーするユニットテスト生成のためのプロジェクトレベルのベンチマークである。
論文 参考訳(メタデータ) (2025-02-10T15:24:30Z) - LlamaRestTest: Effective REST API Testing with Small Language Models [50.058600784556816]
LlamaRestTestは、2つのLLM(Large Language Models)を使って現実的なテストインプットを生成する新しいアプローチである。
私たちは、GPTを使った仕様強化ツールであるRESTGPTなど、最先端のREST APIテストツールに対して、これを評価しています。
私たちの研究は、REST APIテストにおいて、小さな言語モデルは、大きな言語モデルと同様に、あるいは、より良く機能することができることを示しています。
論文 参考訳(メタデータ) (2025-01-15T05:51:20Z) - Improving the Readability of Automatically Generated Tests using Large Language Models [7.7149881834358345]
探索型ジェネレータの有効性とLLM生成試験の可読性を組み合わせることを提案する。
提案手法は,検索ツールが生成するテスト名や変数名の改善に重点を置いている。
論文 参考訳(メタデータ) (2024-12-25T09:08:53Z) - AntiLeak-Bench: Preventing Data Contamination by Automatically Constructing Benchmarks with Updated Real-World Knowledge [68.39683427262335]
既存の研究は、新たに収集されたデータが既存の知識を含む可能性があるため、汚染のない評価を保証することができない。
本稿では,自動アンチリーチベンチマークフレームワークであるAntiLeak-Benchを提案する。
論文 参考訳(メタデータ) (2024-12-18T09:53:12Z) - SpecTool: A Benchmark for Characterizing Errors in Tool-Use LLMs [77.79172008184415]
SpecToolは、ツール使用タスクのLLM出力のエラーパターンを特定するための新しいベンチマークである。
もっとも顕著なLCMでも,これらの誤りパターンが出力に現れることを示す。
SPECTOOLの分析と洞察を使って、エラー軽減戦略をガイドすることができる。
論文 参考訳(メタデータ) (2024-11-20T18:56:22Z) - Toward Automated Validation of Language Model Synthesized Test Cases using Semantic Entropy [0.5057850174013127]
現代の大規模言語モデル(LLM)ベースのプログラミングエージェントは、しばしば、生成されたコードを洗練するためにテスト実行フィードバックに依存する。
本稿では,LLMが生成したテストケースの自動検証にセマンティックエントロピーを利用する新しいフレームワークVALTESTを紹介する。
VALTESTはテストの妥当性を最大29%向上し、パス@1スコアの大幅な増加によって証明されたコード生成のパフォーマンスが向上することを示している。
論文 参考訳(メタデータ) (2024-11-13T00:07:32Z) - SYNTHEVAL: Hybrid Behavioral Testing of NLP Models with Synthetic CheckLists [59.08999823652293]
我々は,NLPモデルの包括的評価のために,SyntheVALを提案する。
最後の段階では、人間の専門家が困難な例を調査し、手動でテンプレートを設計し、タスク固有のモデルが一貫して示す障害の種類を特定します。
我々は、感情分析と有害言語検出という2つの分類課題にSynTHEVALを適用し、これらの課題における強力なモデルの弱点を特定するのに、我々のフレームワークが有効であることを示す。
論文 参考訳(メタデータ) (2024-08-30T17:41:30Z) - Improving LLM-based Unit test generation via Template-based Repair [8.22619177301814]
単体テストは個々のプログラムユニットのバグを検出するのに不可欠だが、時間と労力を消費する。
大規模言語モデル(LLM)は、顕著な推論と生成能力を示している。
本稿では,新しい単体テスト生成法であるTestARTを提案する。
論文 参考訳(メタデータ) (2024-08-06T10:52:41Z) - Large-scale, Independent and Comprehensive study of the power of LLMs for test case generation [11.056044348209483]
クラスやメソッドなどのコードモジュールのバグを特定するのに不可欠なユニットテストは、時間的制約のため、開発者によって無視されることが多い。
GPTやMistralのようなLarge Language Models (LLM)は、テスト生成を含むソフトウェア工学における約束を示す。
論文 参考訳(メタデータ) (2024-06-28T20:38:41Z) - Benchmarking Uncertainty Quantification Methods for Large Language Models with LM-Polygraph [83.90988015005934]
不確実性定量化(英: Uncertainty Quantification、UQ)は、機械学習(ML)アプリケーションにおいて重要なコンポーネントである。
最新のUQベースラインの集合を実装した新しいベンチマークを導入する。
我々は、9つのタスクにわたるUQと正規化技術に関する大規模な実証的研究を行い、最も有望なアプローチを特定した。
論文 参考訳(メタデータ) (2024-06-21T20:06:31Z) - Test Oracle Automation in the era of LLMs [52.69509240442899]
大規模言語モデル(LLM)は、多様なソフトウェアテストタスクに取り組むのに顕著な能力を示した。
本研究の目的は, 各種のオラクル生成時に生じる課題とともに, LLMs によるオラクルの自動化の可能性について検討することである。
論文 参考訳(メタデータ) (2024-05-21T13:19:10Z) - Large Language Models as Test Case Generators: Performance Evaluation and Enhancement [3.5398126682962587]
大規模言語モデルが高品質なテストケースをいかに生み出すかを検討する。
本稿では,テストインプットとテストアウトプットの生成を分離するemphTestChainというマルチエージェントフレームワークを提案する。
以上の結果から,TestChainはベースラインのマージンを大きく上回っていることが示唆された。
論文 参考訳(メタデータ) (2024-04-20T10:27:01Z) - Observation-based unit test generation at Meta [52.4716552057909]
TestGenは、アプリケーション実行中に観察された複雑なオブジェクトのシリアライズされた観察から作られたユニットテストを自動的に生成する。
TestGenは518のテストを本番環境に投入し、継続的統合で9,617,349回実行され、5,702の障害が見つかった。
評価の結果,信頼性の高い4,361のエンドツーエンドテストから,少なくとも86%のクラスでテストを生成することができた。
論文 参考訳(メタデータ) (2024-02-09T00:34:39Z) - Code-Aware Prompting: A study of Coverage Guided Test Generation in Regression Setting using LLM [32.44432906540792]
テスト生成における大規模言語モデルのコード認識促進戦略であるSymPromptを提案する。
SymPromptは、正しいテスト世代を5倍に増やし、CodeGen2の相対カバレッジを26%向上させる。
特に、GPT-4に適用すると、SymPromptはベースラインのプロンプト戦略に比べて2倍以上のカバレッジが向上する。
論文 参考訳(メタデータ) (2024-01-31T18:21:49Z) - Effective Test Generation Using Pre-trained Large Language Models and
Mutation Testing [13.743062498008555]
大規模言語モデル(LLM)が生成するテストケースの有効性を,バグの発見の観点から改善するための MuTAP を導入する。
MuTAPは、プログラム・アンダー・テスト(PUT)の自然言語記述がない場合に有効なテストケースを生成することができる
提案手法は, 最大28%の人書きコードスニペットを検出できることを示す。
論文 参考訳(メタデータ) (2023-08-31T08:48:31Z) - LLMs as Factual Reasoners: Insights from Existing Benchmarks and Beyond [135.8013388183257]
そこで我々は,SummEditsと呼ばれる10ドメインのベンチマークで不整合検出ベンチマークを作成し,実装する新しいプロトコルを提案する。
ほとんどのLLMはSummEditsで苦労しており、パフォーマンスはランダムに近い。
最も優れたモデルであるGPT-4は、推定された人間のパフォーマンスよりも8%低い。
論文 参考訳(メタデータ) (2023-05-23T21:50:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。