論文の概要: Benefiting from Quantum? A Comparative Study of Q-Seg, Quantum-Inspired Techniques, and U-Net for Crack Segmentation
- arxiv url: http://arxiv.org/abs/2410.10713v1
- Date: Mon, 14 Oct 2024 16:51:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-29 20:05:09.754514
- Title: Benefiting from Quantum? A Comparative Study of Q-Seg, Quantum-Inspired Techniques, and U-Net for Crack Segmentation
- Title(参考訳): 量子から得られるベネフィット : クラックセグメンテーションのためのQセグ、量子インスピレーション技術およびUネットの比較研究
- Authors: Akshaya Srinivasan, Alexander Geng, Antonio Macaluso, Maximilian Kiefer-Emmanouilidis, Ali Moghiseh,
- Abstract要約: 本研究は, クラックセグメンテーションの古典モデルと比較して, 量子および量子に着想を得た手法の性能を評価する。
以上の結果から,量子インスパイアされた量子法と量子法は,特に複雑なクラックパターンに対して,画像セグメンテーションに有望な代替手段を提供し,近未来の応用に応用できることが示唆された。
- 参考スコア(独自算出の注目度): 41.01256771536732
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Exploring the potential of quantum hardware for enhancing classical and real-world applications is an ongoing challenge. This study evaluates the performance of quantum and quantum-inspired methods compared to classical models for crack segmentation. Using annotated gray-scale image patches of concrete samples, we benchmark a classical mean Gaussian mixture technique, a quantum-inspired fermion-based method, Q-Seg a quantum annealing-based method, and a U-Net deep learning architecture. Our results indicate that quantum-inspired and quantum methods offer a promising alternative for image segmentation, particularly for complex crack patterns, and could be applied in near-future applications.
- Abstract(参考訳): 古典的および現実世界のアプリケーションを強化するための量子ハードウェアの可能性を探ることは、現在進行中の課題である。
本研究は, クラックセグメンテーションの古典モデルと比較して, 量子および量子に着想を得た手法の性能を評価する。
コンクリート試料の注釈付きグレースケール画像パッチを用いて,古典平均ガウス混合法,量子インスパイアされたフェルミオン法,Q-Seg量子アニール法,U-Net深層学習アーキテクチャをベンチマークした。
以上の結果から,量子インスパイアされた量子法と量子法は,特に複雑なクラックパターンに対して,画像セグメンテーションに有望な代替手段を提供し,近未来の応用に応用できることが示唆された。
関連論文リスト
- Demonstration of Hardware Efficient Photonic Variational Quantum Algorithm [2.4630731476141365]
本稿では,1光子と線形光ネットワークが変分量子アルゴリズムの実装に十分であることを示す。
因子化タスクのインスタンスに取り組むための変分的アプローチの実証実験によってこれを実証する。
論文 参考訳(メタデータ) (2024-08-19T18:26:57Z) - Hybrid Classical-Quantum architecture for vectorised image classification of hand-written sketches [0.0]
量子機械学習は、別の方法でデータを学ぶために量子現象をどのように活用するかを研究する。
近年の進歩は、ハイブリッド古典量子モデルは、アーキテクチャの複雑さが低い場合に競争性能を達成できることを示唆している。
本稿では,QMLモデルのテストベッドとして,スケッチ描画のベクトルベース表現を提案する。
論文 参考訳(メタデータ) (2024-07-08T21:51:20Z) - Quantum Advantage Actor-Critic for Reinforcement Learning [5.579028648465784]
本稿では,Advantage Actor-Criticアルゴリズムと変分量子回路を組み合わせた新しい量子強化学習手法を提案する。
複数の量子アドバンテージ・アクター・クリティカル構成をよく知られたカートポール環境で実証的にテストし、連続的な状態空間を持つ制御タスクにおける我々のアプローチを評価する。
論文 参考訳(メタデータ) (2024-01-13T11:08:45Z) - Q-Seg: Quantum Annealing-Based Unsupervised Image Segmentation [4.737806718785056]
量子アニールに基づく新しい教師なし画像分割法Q-Segを提案する。
画像のスペクトル情報と空間情報を同化する画素分割問題をグラフカット最適化タスクとして定式化する。
合成データセットに関する実証的な評価では、Q-Segは最先端の古典的ソリューションよりも実行時性能が優れていることが示されている。
論文 参考訳(メタデータ) (2023-11-21T17:27:20Z) - Hybrid quantum transfer learning for crack image classification on NISQ
hardware [62.997667081978825]
グレー値画像のひび割れ検出に量子転送学習を適用した。
我々は、PennyLaneの標準量子ビットのパフォーマンスとトレーニング時間を、IBMのqasm_simulatorや実際のバックエンドと比較する。
論文 参考訳(メタデータ) (2023-07-31T14:45:29Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
古典的なディープニューラルネットワークの量子アナログを構築することは、量子コンピューティングにおける根本的な課題である。
鍵となる問題は、古典的なディープラーニングの本質的な非線形性にどのように対処するかである。
我々は、深層機械学習のこれらの側面を複製できる量子機械学習の定式化であるQuantum Path Kernelを紹介する。
論文 参考訳(メタデータ) (2022-12-22T16:06:24Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - A Quantum Kernel Learning Approach to Acoustic Modeling for Spoken
Command Recognition [69.97260364850001]
本稿では,量子カーネル学習(QKL)フレームワークを提案する。
古典的-量子的特徴符号化に基づく音響特性を計画する。
論文 参考訳(メタデータ) (2022-11-02T16:46:23Z) - Towards Bundle Adjustment for Satellite Imaging via Quantum Machine
Learning [2.660348668799655]
キーポイント抽出と特徴マッチングのための量子法に着目する。
これらの手法が量子アニールやゲートベースの量子コンピュータのためにどのように再計算されるかを説明する。
論文 参考訳(メタデータ) (2022-04-23T19:33:14Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
超伝導量子プロセッサを用いた実世界の手書き桁画像の学習と生成を実験的に行う。
我々の研究は、短期量子デバイス上での高度な量子生成モデル開発のためのガイダンスを提供する。
論文 参考訳(メタデータ) (2020-10-13T06:57:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。