論文の概要: Hybrid Classical-Quantum architecture for vectorised image classification of hand-written sketches
- arxiv url: http://arxiv.org/abs/2407.06416v1
- Date: Mon, 8 Jul 2024 21:51:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 19:54:43.120624
- Title: Hybrid Classical-Quantum architecture for vectorised image classification of hand-written sketches
- Title(参考訳): 手書きスケッチのベクトル化画像分類のためのハイブリッド古典量子アーキテクチャ
- Authors: Y. Cordero, S. Biswas, F. Vilariño, M. Bilkis,
- Abstract要約: 量子機械学習は、別の方法でデータを学ぶために量子現象をどのように活用するかを研究する。
近年の進歩は、ハイブリッド古典量子モデルは、アーキテクチャの複雑さが低い場合に競争性能を達成できることを示唆している。
本稿では,QMLモデルのテストベッドとして,スケッチ描画のベクトルベース表現を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Quantum machine learning (QML) investigates how quantum phenomena can be exploited in order to learn data in an alternative way, \textit{e.g.} by means of a quantum computer. While recent results evidence that QML models can potentially surpass their classical counterparts' performance in specific tasks, quantum technology hardware is still unready to reach quantum advantage in tasks of significant relevance to the broad scope of the computer science community. Recent advances indicate that hybrid classical-quantum models can readily attain competitive performances at low architecture complexities. Such investigations are often carried out for image-processing tasks, and are notably constrained to modelling \textit{raster images}, represented as a grid of two-dimensional pixels. Here, we introduce vector-based representation of sketch drawings as a test-bed for QML models. Such a lower-dimensional data structure results handful to benchmark model's performance, particularly in current transition times, where classical simulations of quantum circuits are naturally limited in the number of qubits, and quantum hardware is not readily available to perform large-scale experiments. We report some encouraging results for primitive hybrid classical-quantum architectures, in a canonical sketch recognition problem.
- Abstract(参考訳): 量子機械学習(QML)は、量子コンピュータを用いて別の方法でデータを学習するために量子現象をどのように活用するかを研究する。
近年の研究では、QMLモデルは特定のタスクにおける古典的な性能を上回る可能性があることが証明されているが、量子技術ハードウェアは、コンピュータサイエンスコミュニティの幅広い範囲に大きく関係するタスクにおいて、量子上の優位性に達するには相変わらず不適当である。
近年の進歩は、ハイブリッド古典量子モデルは、アーキテクチャの複雑さが低い場合に容易に競争性能を達成できることを示唆している。
このような調査はしばしば画像処理タスクのために行われ、特に2次元ピクセルの格子として表される \textit{raster image} のモデル化に制約されている。
本稿では,QMLモデルのテストベッドとして,スケッチ描画のベクトルベース表現を提案する。
このような低次元のデータ構造は、特に量子回路の古典的なシミュレーションが量子ビットの数で自然に制限され、量子ハードウェアは大規模な実験を行うために簡単には利用できない現在の遷移時間において、ベンチマークモデルの性能にわずかな結果をもたらす。
正規スケッチ認識問題において,プリミティブなハイブリッド量子アーキテクチャに対して,いくつかの励振効果を報告した。
関連論文リスト
- LatentQGAN: A Hybrid QGAN with Classical Convolutional Autoencoder [5.295820453939521]
量子機械学習の潜在的な応用は、古典的なデータを生成するために量子コンピュータのパワーを利用することである。
本稿では,自己エンコーダと結合したハイブリッド量子古典的GANを用いた新しい量子モデルであるLatntQGANを提案する。
論文 参考訳(メタデータ) (2024-09-22T23:18:06Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Quantum Transfer Learning for MNIST Classification Using a Hybrid Quantum-Classical Approach [0.0]
本研究は、画像分類タスクにおける量子コンピューティングと古典的機械学習の統合について検討する。
両パラダイムの強みを生かしたハイブリッド量子古典的アプローチを提案する。
実験結果から、ハイブリッドモデルが量子コンピューティングと古典的手法を統合する可能性を示す一方で、量子結果に基づいて訓練された最終モデルの精度は、圧縮された特徴に基づいて訓練された古典的モデルよりも低いことが示唆された。
論文 参考訳(メタデータ) (2024-08-05T22:16:27Z) - Hybrid Quantum-Classical Normalizing Flow [5.85475369017678]
パラメータ化量子回路に基づくハイブリッド量子古典正規化フロー(HQCNF)モデルを提案する。
我々は画像生成問題でモデルを検証した。
量子生成逆数ネットワーク(QGAN)のような他の量子生成モデルと比較して、我々のモデルはFr'echet 距離(FID)の低いスコアを得る。
論文 参考訳(メタデータ) (2024-05-22T16:37:22Z) - Hybrid quantum transfer learning for crack image classification on NISQ
hardware [62.997667081978825]
グレー値画像のひび割れ検出に量子転送学習を適用した。
我々は、PennyLaneの標準量子ビットのパフォーマンスとトレーニング時間を、IBMのqasm_simulatorや実際のバックエンドと比較する。
論文 参考訳(メタデータ) (2023-07-31T14:45:29Z) - Classical-to-Quantum Transfer Learning Facilitates Machine Learning with Variational Quantum Circuit [62.55763504085508]
本稿では,変分量子回路(VQC)を用いた古典的量子移動学習アーキテクチャにより,VQCモデルの表現と一般化(推定誤差)が向上することを証明する。
古典-量子遷移学習のアーキテクチャは、事前学習された古典的生成AIモデルを活用し、訓練段階におけるVQCの最適パラメータの発見を容易にする。
論文 参考訳(メタデータ) (2023-05-18T03:08:18Z) - Quantum machine learning for image classification [39.58317527488534]
本研究では、量子力学の原理を有効計算に活用する2つの量子機械学習モデルを紹介する。
我々の最初のモデルは、並列量子回路を持つハイブリッド量子ニューラルネットワークであり、ノイズの多い中間スケール量子時代においても計算の実行を可能にする。
第2のモデルは、クオン進化層を持つハイブリッド量子ニューラルネットワークを導入し、畳み込みプロセスによる画像の解像度を低下させる。
論文 参考訳(メタデータ) (2023-04-18T18:23:20Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
生成モデルの一般化性能を評価するためのフレームワークを構築した。
古典的および量子生成モデル間の実用的量子優位性(PQA)に対する最初の比較レースを確立する。
以上の結果から,QCBMは,他の最先端の古典的生成モデルよりも,データ制限方式の方が効率的であることが示唆された。
論文 参考訳(メタデータ) (2023-03-27T22:48:28Z) - Reflection Equivariant Quantum Neural Networks for Enhanced Image
Classification [0.7232471205719458]
我々は、データに固有の対称性を明示的に尊重する新しい機械学習モデル、いわゆる幾何量子機械学習(GQML)を構築した。
これらのネットワークは、複雑な実世界の画像データセットに対する一般的なアンサーゼを一貫して、そして著しく向上させることができる。
論文 参考訳(メタデータ) (2022-12-01T04:10:26Z) - Generation of High-Resolution Handwritten Digits with an Ion-Trap
Quantum Computer [55.41644538483948]
本稿では, 量子回路に基づく生成モデルを構築し, 生成逆数ネットワークの事前分布を学習し, サンプル化する。
我々は、このハイブリッドアルゴリズムを171ドルのYb$+$ ion qubitsに基づいてイオントラップデバイスでトレーニングし、高品質な画像を生成する。
論文 参考訳(メタデータ) (2020-12-07T18:51:28Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
超伝導量子プロセッサを用いた実世界の手書き桁画像の学習と生成を実験的に行う。
我々の研究は、短期量子デバイス上での高度な量子生成モデル開発のためのガイダンスを提供する。
論文 参考訳(メタデータ) (2020-10-13T06:57:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。