Asymptotic Analysis of Sample-averaged Q-learning
- URL: http://arxiv.org/abs/2410.10737v2
- Date: Wed, 26 Feb 2025 21:39:06 GMT
- Title: Asymptotic Analysis of Sample-averaged Q-learning
- Authors: Saunak Kumar Panda, Ruiqi Liu, Yisha Xiang,
- Abstract summary: This paper introduces a framework for time-varying batch-averaged Q-learning, termed sample-averaged Q-learning (SA-QL)<n>We leverage the functional central limit of the sample-averaged algorithm under mild conditions and develop a random scaling method for interval estimation.<n>This work establishes a unified theoretical foundation for sample-averaged Q-learning, providing insights into effective batch scheduling and statistical inference for RL algorithms.
- Score: 2.2374171443798034
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning (RL) has emerged as a key approach for training agents in complex and uncertain environments. Incorporating statistical inference in RL algorithms is essential for understanding and managing uncertainty in model performance. This paper introduces a generalized framework for time-varying batch-averaged Q-learning, termed sample-averaged Q-learning (SA-QL), which extends traditional single-sample Q-learning by aggregating samples of rewards and next states to better account for data variability and uncertainty. We leverage the functional central limit theorem (FCLT) to establish a novel framework that provides insights into the asymptotic normality of the sample-averaged algorithm under mild conditions. Additionally, we develop a random scaling method for interval estimation, enabling the construction of confidence intervals without requiring extra hyperparameters. Extensive numerical experiments across classic stochastic OpenAI Gym environments, including windy gridworld and slippery frozenlake, demonstrate how different batch scheduling strategies affect learning efficiency, coverage rates, and confidence interval widths. This work establishes a unified theoretical foundation for sample-averaged Q-learning, providing insights into effective batch scheduling and statistical inference for RL algorithms.
Related papers
- Generative QoE Modeling: A Lightweight Approach for Telecom Networks [6.473372512447993]
This study introduces a lightweight generative modeling framework that balances computational efficiency, interpretability, and predictive accuracy.
By validating the use of Vector Quantization (VQ) as a preprocessing technique, continuous network features are effectively transformed into discrete categorical symbols.
This VQ-HMM pipeline enhances the model's capacity to capture dynamic QoE patterns while supporting probabilistic inference on new and unseen data.
arXiv Detail & Related papers (2025-04-30T06:19:37Z) - Uncertainty quantification for Markov chains with application to temporal difference learning [63.49764856675643]
We develop novel high-dimensional concentration inequalities and Berry-Esseen bounds for vector- and matrix-valued functions of Markov chains.
We analyze the TD learning algorithm, a widely used method for policy evaluation in reinforcement learning.
arXiv Detail & Related papers (2025-02-19T15:33:55Z) - A Distribution-Aware Flow-Matching for Generating Unstructured Data for Few-Shot Reinforcement Learning [1.0709300917082865]
We introduce a distribution-aware flow matching approach to generate synthetic unstructured data for few-shot reinforcement learning.
Our approach addresses key challenges in traditional model-based RL, such as overfitting and data correlation.
Results demonstrate that our method achieves stable convergence in terms of maximum Q-value while enhancing frame rates by 30% in the initial timestamps.
arXiv Detail & Related papers (2024-09-21T15:50:59Z) - Stochastic Q-learning for Large Discrete Action Spaces [79.1700188160944]
In complex environments with discrete action spaces, effective decision-making is critical in reinforcement learning (RL)
We present value-based RL approaches which, as opposed to optimizing over the entire set of $n$ actions, only consider a variable set of actions, possibly as small as $mathcalO(log(n)$)$.
The presented value-based RL methods include, among others, Q-learning, StochDQN, StochDDQN, all of which integrate this approach for both value-function updates and action selection.
arXiv Detail & Related papers (2024-05-16T17:58:44Z) - Echoes of Socratic Doubt: Embracing Uncertainty in Calibrated Evidential Reinforcement Learning [1.7898305876314982]
The proposed algorithm combines deep evidential learning with quantile calibration based on principles of conformal inference.
It is tested on a suite of miniaturized Atari games (i.e., MinAtar)
arXiv Detail & Related papers (2024-02-11T05:17:56Z) - The Efficacy of Pessimism in Asynchronous Q-Learning [17.193902915070506]
We develop an algorithmic framework that incorporates the principle of pessimism into asynchronous Q-learning.
This framework leads to, among other things, improved sample efficiency and enhanced adaptivity in the presence of near-expert data.
Our results deliver the first theoretical support for the use of pessimism principle in the presence of Markovian non-i.i.d. data.
arXiv Detail & Related papers (2022-03-14T17:59:01Z) - Pessimistic Q-Learning for Offline Reinforcement Learning: Towards
Optimal Sample Complexity [51.476337785345436]
We study a pessimistic variant of Q-learning in the context of finite-horizon Markov decision processes.
A variance-reduced pessimistic Q-learning algorithm is proposed to achieve near-optimal sample complexity.
arXiv Detail & Related papers (2022-02-28T15:39:36Z) - Online Target Q-learning with Reverse Experience Replay: Efficiently
finding the Optimal Policy for Linear MDPs [50.75812033462294]
We bridge the gap between practical success of Q-learning and pessimistic theoretical results.
We present novel methods Q-Rex and Q-RexDaRe.
We show that Q-Rex efficiently finds the optimal policy for linear MDPs.
arXiv Detail & Related papers (2021-10-16T01:47:41Z) - Task-Specific Normalization for Continual Learning of Blind Image
Quality Models [105.03239956378465]
We present a simple yet effective continual learning method for blind image quality assessment (BIQA)
The key step in our approach is to freeze all convolution filters of a pre-trained deep neural network (DNN) for an explicit promise of stability.
We assign each new IQA dataset (i.e., task) a prediction head, and load the corresponding normalization parameters to produce a quality score.
The final quality estimate is computed by black a weighted summation of predictions from all heads with a lightweight $K$-means gating mechanism.
arXiv Detail & Related papers (2021-07-28T15:21:01Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
We describe two types of forecasting problems: regular grid-based and graph-based.
We analyze UQ methods from both the Bayesian and the frequentist point view, casting in a unified framework via statistical decision theory.
Through extensive experiments on real-world road network traffic, epidemics, and air quality forecasting tasks, we reveal the statistical computational trade-offs for different UQ methods.
arXiv Detail & Related papers (2021-05-25T14:35:46Z) - Straggler-Resilient Federated Learning: Leveraging the Interplay Between
Statistical Accuracy and System Heterogeneity [57.275753974812666]
Federated learning involves learning from data samples distributed across a network of clients while the data remains local.
In this paper, we propose a novel straggler-resilient federated learning method that incorporates statistical characteristics of the clients' data to adaptively select the clients in order to speed up the learning procedure.
arXiv Detail & Related papers (2020-12-28T19:21:14Z) - Cross Learning in Deep Q-Networks [82.20059754270302]
We propose a novel cross Q-learning algorithm, aim at alleviating the well-known overestimation problem in value-based reinforcement learning methods.
Our algorithm builds on double Q-learning, by maintaining a set of parallel models and estimate the Q-value based on a randomly selected network.
arXiv Detail & Related papers (2020-09-29T04:58:17Z) - Analyzing Reinforcement Learning Benchmarks with Random Weight Guessing [2.5137859989323537]
A large number of policy networks are generated by randomly guessing their parameters, and then evaluated on the benchmark task.
We show that this approach isolates the environment complexity, highlights specific types of challenges, and provides a proper foundation for the statistical analysis of the task's difficulty.
We test our approach on a variety of classic control benchmarks from the OpenAI Gym, where we show that small untrained networks can provide a robust baseline for a variety of tasks.
arXiv Detail & Related papers (2020-04-16T15:32:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.