論文の概要: Adversarially Robust Out-of-Distribution Detection Using Lyapunov-Stabilized Embeddings
- arxiv url: http://arxiv.org/abs/2410.10744v2
- Date: Sun, 26 Jan 2025 17:35:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:53:13.950229
- Title: Adversarially Robust Out-of-Distribution Detection Using Lyapunov-Stabilized Embeddings
- Title(参考訳): Lyapunov-Stabilized Embeddings を用いた逆ロバストアウトオブディストリビューション検出
- Authors: Hossein Mirzaei, Mackenzie W. Mathis,
- Abstract要約: AROSは、ニューラル常微分方程式(NODE)とリャプノフ安定性定理を利用する新しいアプローチである。
調整された損失関数により、リアプノフ安定性理論を適用し、分布内(ID)とOODデータが安定平衡点に収束することを保証する。
このアプローチは任意の摂動入力を安定平衡に戻すことを奨励し、それによってモデルの対向摂動に対する堅牢性を高める。
- 参考スコア(独自算出の注目度): 1.0260351016050424
- License:
- Abstract: Despite significant advancements in out-of-distribution (OOD) detection, existing methods still struggle to maintain robustness against adversarial attacks, compromising their reliability in critical real-world applications. Previous studies have attempted to address this challenge by exposing detectors to auxiliary OOD datasets alongside adversarial training. However, the increased data complexity inherent in adversarial training, and the myriad of ways that OOD samples can arise during testing, often prevent these approaches from establishing robust decision boundaries. To address these limitations, we propose AROS, a novel approach leveraging neural ordinary differential equations (NODEs) with Lyapunov stability theorem in order to obtain robust embeddings for OOD detection. By incorporating a tailored loss function, we apply Lyapunov stability theory to ensure that both in-distribution (ID) and OOD data converge to stable equilibrium points within the dynamical system. This approach encourages any perturbed input to return to its stable equilibrium, thereby enhancing the model's robustness against adversarial perturbations. To not use additional data, we generate fake OOD embeddings by sampling from low-likelihood regions of the ID data feature space, approximating the boundaries where OOD data are likely to reside. To then further enhance robustness, we propose the use of an orthogonal binary layer following the stable feature space, which maximizes the separation between the equilibrium points of ID and OOD samples. We validate our method through extensive experiments across several benchmarks, demonstrating superior performance, particularly under adversarial attacks. Notably, our approach improves robust detection performance from 37.8% to 80.1% on CIFAR-10 vs. CIFAR-100 and from 29.0% to 67.0% on CIFAR-100 vs. CIFAR-10.
- Abstract(参考訳): アウト・オブ・ディストリビューション(OOD)検出の大幅な進歩にもかかわらず、既存の手法は敵の攻撃に対する堅牢性を維持するのに苦慮し、重要な現実世界のアプリケーションにおいて彼らの信頼性を損なう。
従来の研究は、敵の訓練と共に補助的なOODデータセットに検出器を露出させることで、この問題に対処しようと試みてきた。
しかし、データ複雑性の増大は、敵のトレーニングに固有のものであり、OODサンプルがテスト中に起こりうる無数の方法によって、堅牢な意思決定境界が確立されることを防いでいることが多い。
これらの制約に対処するため、我々は、線形常微分方程式(NODE)とリアプノフ安定定理を併用した新しいアプローチであるAROSを提案し、OOD検出のためのロバストな埋め込みを得る。
調整された損失関数を組み込むことにより、リアプノフ安定性理論を適用し、分散内(ID)データとOODデータの両方が力学系内の安定平衡点に収束することを保証する。
このアプローチは任意の摂動入力を安定平衡に戻すことを奨励し、それによってモデルの対向摂動に対する堅牢性を高める。
追加データを使用しないために,IDデータ特徴空間の低次領域をサンプリングし,OODデータが居住する可能性のある境界を近似することにより,偽のOOD埋め込みを生成する。
さらに頑健性を高めるために,IDとOODの平衡点の分離を最大化する,安定な特徴空間に沿った直交二層法を提案する。
提案手法は,いくつかのベンチマークで広範な実験を行い,特に敵攻撃下での優れた性能を示す。
特に,CIFAR-100では37.8%から80.1%に,CIFAR-100では29.0%から67.0%に改善した。
関連論文リスト
- Robust Fine-tuning of Zero-shot Models via Variance Reduction [56.360865951192324]
微調整ゼロショットモデルの場合、このデシドラトゥムは細調整モデルで、分布内(ID)と分布外(OOD)の両方で優れる。
トレードオフを伴わずに最適なIDとOODの精度を同時に達成できるサンプルワイズアンサンブル手法を提案する。
論文 参考訳(メタデータ) (2024-11-11T13:13:39Z) - Rethinking Out-of-Distribution Detection on Imbalanced Data Distribution [38.844580833635725]
アーキテクチャ設計におけるバイアスを緩和し,不均衡なOOD検出器を増強する訓練時間正規化手法を提案する。
提案手法は,CIFAR10-LT,CIFAR100-LT,ImageNet-LTのベンチマークに対して一貫した改良を行う。
論文 参考訳(メタデータ) (2024-07-23T12:28:59Z) - Advancing Out-of-Distribution Detection through Data Purification and
Dynamic Activation Function Design [12.45245390882047]
OOD-R(Out-of-Distribution-Rectified)は,ノイズ低減特性が向上したオープンソースデータセットの集合体である。
OOD-Rはノイズフィルタリング技術を導入してデータセットを洗練し、OOD検出アルゴリズムのより正確で信頼性の高い評価を確実にする。
本稿では,多様な入力に対するモデルの応答を微調整し,特徴抽出の安定性を向上させる革新的な方法であるActFunを提案する。
論文 参考訳(メタデータ) (2024-03-06T02:39:22Z) - Model-free Test Time Adaptation for Out-Of-Distribution Detection [62.49795078366206]
我々はtextbfDistribution textbfDetection (abbr) のための非パラメトリックテスト時間 textbfAdaptation フレームワークを提案する。
Abbrは、オンラインテストサンプルを使用して、テスト中のモデル適応、データ分散の変更への適応性を向上させる。
複数のOOD検出ベンチマークにおける包括的実験により,abrの有効性を示す。
論文 参考訳(メタデータ) (2023-11-28T02:00:47Z) - OODRobustBench: a Benchmark and Large-Scale Analysis of Adversarial Robustness under Distribution Shift [20.14559162084261]
OODRobustBenchは60.7Kの敵評価を用いて706のロバストモデルを評価するために使用される。
この大規模解析は、敵対的ロバスト性は深刻なOOD一般化問題に苦しむことを示している。
次に、既存の手法が高いOODロバスト性を達成できないことを予測し、検証する。
論文 参考訳(メタデータ) (2023-10-19T14:50:46Z) - Diffusion Denoising Process for Perceptron Bias in Out-of-distribution
Detection [67.49587673594276]
我々は、識別器モデルが入力の特定の特徴に対してより敏感であることを示唆する新しいパーセプトロンバイアスの仮定を導入し、過度な問題を引き起こした。
DMの拡散分解過程 (DDP) が非対称の新たな形態として機能し, 入力を高め, 過信問題を緩和するのに適していることを示す。
CIFAR10, CIFAR100, ImageNetによる実験により, 提案手法がSOTA手法より優れていることが示された。
論文 参考訳(メタデータ) (2022-11-21T08:45:08Z) - Your Out-of-Distribution Detection Method is Not Robust! [0.4893345190925178]
オフ・オブ・ディストリビューション(OOD)検出は,信頼性と安全性において領域外サンプルを特定することの重要性から,近年注目されている。
この問題を緩和するために、最近いくつかの防衛策が提案されている。
我々は、より大きな摂動サイズを持つイン/アウトデータに対するエンドツーエンドのPGD攻撃に対して、これらの防御を再検討する。
論文 参考訳(メタデータ) (2022-09-30T05:49:00Z) - Provably Robust Detection of Out-of-distribution Data (almost) for free [124.14121487542613]
ディープニューラルネットワークは、アウト・オブ・ディストリビューション(OOD)データに対する高い過度な予測を生成することが知られている。
本稿では,認証可能なOOD検出器を標準分類器と組み合わせてOOD認識分類器を提案する。
このようにして、我々は2つの世界のベストを達成している。OOD検出は、分布内に近いOODサンプルであっても、予測精度を損なうことなく、非操作型OODデータに対する最先端のOOD検出性能に近接する。
論文 参考訳(メタデータ) (2021-06-08T11:40:49Z) - Adversarial Robustness under Long-Tailed Distribution [93.50792075460336]
敵対的ロバスト性はディープネットワークの脆弱性と本質的特徴を明らかにすることで近年広く研究されている。
本研究では,長尾分布下における敵対的脆弱性と防御について検討する。
我々は、スケール不変とデータ再分散という2つの専用モジュールからなるクリーンで効果的なフレームワークであるRoBalを提案する。
論文 参考訳(メタデータ) (2021-04-06T17:53:08Z) - Robust Out-of-distribution Detection for Neural Networks [51.19164318924997]
既存の検出機構は, 分布内およびOOD入力の評価において, 極めて脆弱であることを示す。
ALOE と呼ばれる実効性のあるアルゴリズムを提案する。このアルゴリズムは,逆向きに構築された逆数と外数の両方の例にモデルを公開することにより,堅牢なトレーニングを行う。
論文 参考訳(メタデータ) (2020-03-21T17:46:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。