論文の概要: Probabilistic Trust Intervals for Out of Distribution Detection
- arxiv url: http://arxiv.org/abs/2102.01336v3
- Date: Mon, 23 Dec 2024 19:10:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-25 15:53:22.217554
- Title: Probabilistic Trust Intervals for Out of Distribution Detection
- Title(参考訳): 分布検出のための確率的信頼区間
- Authors: Gagandeep Singh, Ishan Mishra, Deepak Mishra,
- Abstract要約: 本稿では,従来のパラメータを変更することなく,事前学習ネットワークにおけるOOD検出を向上する手法を提案する。
提案手法は,各ネットワーク重みに対する確率的信頼区間を定義し,分布内データを用いて決定する。
我々は,MNIST,Fashion-MNIST,CIFAR-10,CIFAR-100,CIFAR-10-Cについて検討した。
- 参考スコア(独自算出の注目度): 8.35564578781252
- License:
- Abstract: The ability of a deep learning network to distinguish between in-distribution (ID) and out-of-distribution (OOD) inputs is crucial for ensuring the reliability and trustworthiness of AI systems. Existing OOD detection methods often involve complex architectural innovations, such as ensemble models, which, while enhancing detection accuracy, significantly increase model complexity and training time. Other methods utilize surrogate samples to simulate OOD inputs, but these may not generalize well across different types of OOD data. In this paper, we propose a straightforward yet novel technique to enhance OOD detection in pre-trained networks without altering its original parameters. Our approach defines probabilistic trust intervals for each network weight, determined using in-distribution data. During inference, additional weight values are sampled, and the resulting disagreements among outputs are utilized for OOD detection. We propose a metric to quantify this disagreement and validate its effectiveness with empirical evidence. Our method significantly outperforms various baseline methods across multiple OOD datasets without requiring actual or surrogate OOD samples. We evaluate our approach on MNIST, Fashion-MNIST, CIFAR-10, CIFAR-100 and CIFAR-10-C (a corruption-augmented version of CIFAR-10), across various neural network architectures (e.g., VGG-16, ResNet-20, DenseNet-100). On the MNIST-FashionMNIST setup, our method achieves a False Positive Rate (FPR) of 12.46\% at 95\% True Positive Rate (TPR), compared to 27.09\% achieved by the best baseline. On adversarial and corrupted datasets such as CIFAR-10-C, our proposed method easily differentiate between clean and noisy inputs. These results demonstrate the robustness of our approach in identifying corrupted and adversarial inputs, all without requiring OOD samples during training.
- Abstract(参考訳): ディープラーニングネットワークが、AIシステムの信頼性と信頼性を確保するために、インディストリビューション(ID)とアウト・オブ・ディストリビューション(OOD)のインプットを区別する能力は不可欠である。
既存のOOD検出手法は、しばしばアンサンブルモデルのような複雑なアーキテクチャ革新を伴い、検出精度を向上しながら、モデルの複雑さとトレーニング時間を著しく向上させる。
他の方法では、Surrogateサンプルを使用してOOD入力をシミュレートするが、これらはOODデータの種類によってはうまく一般化できない。
本稿では,従来のパラメータを変更することなく,事前学習ネットワークにおけるOOD検出を向上する手法を提案する。
提案手法は,各ネットワーク重みに対する確率的信頼区間を定義し,分布内データを用いて決定する。
推測中、追加の重み値がサンプリングされ、出力間の不一致がOOD検出に利用される。
本稿では,この不一致を定量化し,その有効性を実証的証拠で検証する指標を提案する。
提案手法は,複数のOODデータセットに対して,実際のOODサンプルやサロゲートを必要とせず,様々なベースライン法を著しく上回っている。
我々は、MNIST、Fashion-MNIST、CIFAR-10、CIFAR-100、CIFAR-10-C(CIFAR-10の汚職拡大版)に対するアプローチを、ニューラルネットワークアーキテクチャ(例えば、VGG-16、ResNet-20、DenseNet-100)にわたって評価した。
MNIST-FashionMNISTのセットアップでは、最良のベースラインで達成された27.09倍の12.46倍の正の率(FPR)を95倍の正の率(TPR)で達成する。
CIFAR-10-Cのような敵対的・腐敗したデータセットについて,クリーン入力とノイズ入力を区別し易い手法を提案する。
これらの結果は,OODサンプルを必要とせず,破損した入力や逆入力を識別するアプローチの堅牢性を示すものである。
関連論文リスト
- What If the Input is Expanded in OOD Detection? [77.37433624869857]
Out-of-distriion (OOD) 検出は未知のクラスからのOOD入力を特定することを目的としている。
In-distriion(ID)データと区別するために,様々なスコアリング関数を提案する。
入力空間に異なる共通の汚職を用いるという、新しい視点を導入する。
論文 参考訳(メタデータ) (2024-10-24T06:47:28Z) - FlowCon: Out-of-Distribution Detection using Flow-Based Contrastive Learning [0.0]
我々は新しい密度に基づくOOD検出技術であるtextitFlowConを紹介する。
我々の主な革新は、正規化フローの特性と教師付きコントラスト学習を効率的に組み合わせることである。
経験的評価は、一般的な視覚データセットにまたがる手法の性能向上を示す。
論文 参考訳(メタデータ) (2024-07-03T20:33:56Z) - Model-free Test Time Adaptation for Out-Of-Distribution Detection [62.49795078366206]
我々はtextbfDistribution textbfDetection (abbr) のための非パラメトリックテスト時間 textbfAdaptation フレームワークを提案する。
Abbrは、オンラインテストサンプルを使用して、テスト中のモデル適応、データ分散の変更への適応性を向上させる。
複数のOOD検出ベンチマークにおける包括的実験により,abrの有効性を示す。
論文 参考訳(メタデータ) (2023-11-28T02:00:47Z) - Distilling the Unknown to Unveil Certainty [66.29929319664167]
標準ネットワークがトレーニングされるIDデータから逸脱するテストサンプルを特定するためには、アウト・オブ・ディストリビューション(OOD)検出が不可欠である。
本稿では,IDデータのトレーニングが可能であるか否かを問う,先駆的な学習フレームワークであるOODナレッジ蒸留について紹介する。
論文 参考訳(メタデータ) (2023-11-14T08:05:02Z) - Out-of-distribution Object Detection through Bayesian Uncertainty
Estimation [10.985423935142832]
OOD検出のための新しい,直感的で,スケーラブルなオブジェクト検出手法を提案する。
提案手法は,提案したガウス分布からの重みパラメータサンプリングにより,IDデータとOODデータを識別することができる。
BDD100kおよびVOCデータセットでトレーニングした場合,FPR95スコアを最大8.19%削減し,AUROCスコアを最大13.94%向上させることで,ベイズ対象検出器のOOD識別性能が良好であることを実証した。
論文 参考訳(メタデータ) (2023-10-29T19:10:52Z) - WeShort: Out-of-distribution Detection With Weak Shortcut structure [0.0]
我々は,OODデータに対するニューラルネットワークの過信を低減するために,シンプルで効果的なポストホック手法WeShortを提案する。
提案手法はOOD検出の異なるスコアと互換性があり,ネットワークの異なるアーキテクチャによく対応できる。
論文 参考訳(メタデータ) (2022-06-23T07:59:10Z) - Igeood: An Information Geometry Approach to Out-of-Distribution
Detection [35.04325145919005]
Igeoodは, オフ・オブ・ディストリビューション(OOD)サンプルを効果的に検出する手法である。
Igeoodは任意のトレーニング済みニューラルネットワークに適用され、機械学習モデルにさまざまなアクセス権を持つ。
Igeoodは、さまざまなネットワークアーキテクチャやデータセットにおいて、競合する最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-03-15T11:26:35Z) - Provably Robust Detection of Out-of-distribution Data (almost) for free [124.14121487542613]
ディープニューラルネットワークは、アウト・オブ・ディストリビューション(OOD)データに対する高い過度な予測を生成することが知られている。
本稿では,認証可能なOOD検出器を標準分類器と組み合わせてOOD認識分類器を提案する。
このようにして、我々は2つの世界のベストを達成している。OOD検出は、分布内に近いOODサンプルであっても、予測精度を損なうことなく、非操作型OODデータに対する最先端のOOD検出性能に近接する。
論文 参考訳(メタデータ) (2021-06-08T11:40:49Z) - Learn what you can't learn: Regularized Ensembles for Transductive
Out-of-distribution Detection [76.39067237772286]
ニューラルネットワークの現在のアウト・オブ・ディストリビューション(OOD)検出アルゴリズムは,様々なOOD検出シナリオにおいて不満足な結果をもたらすことを示す。
本稿では,テストデータのバッチを観察した後に検出方法を調整することで,このような「ハード」なOODシナリオがいかに有用かを検討する。
本稿では,テストデータと正規化に人工ラベリング手法を用いて,テストバッチ内のOODサンプルに対してのみ矛盾予測を生成するモデルのアンサンブルを求める手法を提案する。
論文 参考訳(メタデータ) (2020-12-10T16:55:13Z) - Robust Out-of-distribution Detection for Neural Networks [51.19164318924997]
既存の検出機構は, 分布内およびOOD入力の評価において, 極めて脆弱であることを示す。
ALOE と呼ばれる実効性のあるアルゴリズムを提案する。このアルゴリズムは,逆向きに構築された逆数と外数の両方の例にモデルを公開することにより,堅牢なトレーニングを行う。
論文 参考訳(メタデータ) (2020-03-21T17:46:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。