論文の概要: Adaptive Data Transport Mechanism for UAV Surveillance Missions in Lossy Environments
- arxiv url: http://arxiv.org/abs/2410.10843v1
- Date: Mon, 30 Sep 2024 18:22:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-27 06:14:38.369920
- Title: Adaptive Data Transport Mechanism for UAV Surveillance Missions in Lossy Environments
- Title(参考訳): ロスシー環境におけるUAV監視ミッションの適応データ転送機構
- Authors: Niloufar Mehrabi, Sayed Pedram Haeri Boroujeni, Jenna Hofseth, Abolfazl Razi, Long Cheng, Manveen Kaur, James Martin, Rahul Amin,
- Abstract要約: 無人航空機(UAV)は、情報、監視、偵察(ISR)の任務においてますます重要な役割を担っている。
本稿では、ミッション目標に大きく貢献する画像の選択領域を優先する、AIによる代替スケジューリングポリシーを提案する。
- 参考スコア(独自算出の注目度): 2.700610024690147
- License:
- Abstract: Unmanned Aerial Vehicles (UAVs) play an increasingly critical role in Intelligence, Surveillance, and Reconnaissance (ISR) missions such as border patrolling and criminal detection, thanks to their ability to access remote areas and transmit real-time imagery to processing servers. However, UAVs are highly constrained by payload size, power limits, and communication bandwidth, necessitating the development of highly selective and efficient data transmission strategies. This has driven the development of various compression and optimal transmission technologies for UAVs. Nevertheless, most methods strive to preserve maximal information in transferred video frames, missing the fact that only certain parts of images/video frames might offer meaningful contributions to the ultimate mission objectives in the ISR scenarios involving moving object detection and tracking (OD/OT). This paper adopts a different perspective, and offers an alternative AI-driven scheduling policy that prioritizes selecting regions of the image that significantly contributes to the mission objective. The key idea is tiling the image into small patches and developing a deep reinforcement learning (DRL) framework that assigns higher transmission probabilities to patches that present higher overlaps with the detected object of interest, while penalizing sharp transitions over consecutive frames to promote smooth scheduling shifts. Although we used Yolov-8 object detection and UDP transmission protocols as a benchmark testing scenario the idea is general and applicable to different transmission protocols and OD/OT methods. To further boost the system's performance and avoid OD errors for cluttered image patches, we integrate it with interframe interpolations.
- Abstract(参考訳): 無人航空機(UAV)は、遠隔地にアクセスし、処理サーバにリアルタイムの画像を送信する能力により、国境パトロールや犯罪検出などの情報、監視、偵察(ISR)ミッションにおいて、ますます重要な役割を担っている。
しかし、UAVはペイロードサイズ、電力制限、通信帯域幅に強く制約されており、高度に選択的かつ効率的なデータ伝送戦略の開発を必要としている。
これにより、UAVのための様々な圧縮および最適な送信技術の開発が進められた。
しかし、ほとんどの手法は、移動物体の検出と追跡(OD/OT)を含むISRのシナリオにおいて、画像/ビデオフレームの一部だけが究極のミッション目標に有意義な貢献をするという事実を欠いている。
本稿では、異なる視点を採用し、ミッション目標に大きく貢献する画像の選択領域を優先する、代替のAI駆動型スケジューリングポリシーを提供する。
キーとなるアイデアは、画像を小さなパッチにタイリングし、検出された対象と高い重なり合いを示すパッチに高い伝達確率を割り当てるディープ強化学習(DRL)フレームワークを開発することである。
ベンチマークテストのシナリオとしてYolov-8オブジェクト検出とUDP送信プロトコルを用いたが、このアイデアは一般的なものであり、異なる送信プロトコルやOD/OTメソッドにも適用できる。
乱雑な画像パッチに対するシステム性能をさらに向上させ,ODエラーを回避するために,フレーム間補間と統合する。
関連論文リスト
- Aerial Reliable Collaborative Communications for Terrestrial Mobile Users via Evolutionary Multi-Objective Deep Reinforcement Learning [59.660724802286865]
無人航空機(UAV)は、地上通信を改善するための航空基地局(BS)として登場した。
この作業では、UAV対応仮想アンテナアレイによる協調ビームフォーミングを使用して、UAVから地上モバイルユーザへの伝送性能を向上させる。
論文 参考訳(メタデータ) (2025-02-09T09:15:47Z) - Task Delay and Energy Consumption Minimization for Low-altitude MEC via Evolutionary Multi-objective Deep Reinforcement Learning [52.64813150003228]
無人航空機や他の航空機による低高度経済(LAE)は、輸送、農業、環境監視といった分野に革命をもたらした。
今後の6世代(6G)時代において、UAV支援移動エッジコンピューティング(MEC)は特に山岳や災害に遭った地域のような困難な環境において重要である。
タスクオフロード問題は、主にタスク遅延の最小化とUAVのエネルギー消費のトレードオフに対処するUAV支援MECの重要な問題の一つである。
論文 参考訳(メタデータ) (2025-01-11T02:32:42Z) - Multi-Agent Reinforcement Learning for Offloading Cellular Communications with Cooperating UAVs [21.195346908715972]
無人航空機は、地上のBSからデータトラフィックをオフロードする代替手段を提供する。
本稿では,地上BSからデータオフロードを行うために,複数のUAVを効率的に利用するための新しい手法を提案する。
論文 参考訳(メタデータ) (2024-02-05T12:36:08Z) - Integrated Sensing, Computation, and Communication for UAV-assisted
Federated Edge Learning [52.7230652428711]
フェデレーションエッジ学習(FEEL)は、エッジデバイスとサーバ間の定期的な通信を通じて、プライバシ保護モデルトレーニングを可能にする。
無人航空機(UAV)搭載エッジデバイスは、効率的なデータ収集における柔軟性と移動性のため、FEELにとって特に有利である。
論文 参考訳(メタデータ) (2023-06-05T16:01:33Z) - Deep Reinforcement Learning for Trajectory Path Planning and Distributed
Inference in Resource-Constrained UAV Swarms [6.649753747542209]
本研究の目的は,UAVSwarmにおける分散協調推論要求と経路計画のためのモデルの設計である。
定式化問題はNPハードであるため、最適解を見つけることは極めて複雑である。
我々は、広範囲なシミュレーションを行い、その結果を、我々のモデルが競合モデルより優れていることを示す最先端の研究と比較する。
論文 参考訳(メタデータ) (2022-12-21T17:16:42Z) - Adaptive Path Planning for UAVs for Multi-Resolution Semantic
Segmentation [28.104584236205405]
重要な課題は、大規模な環境で取得したデータの価値を最大化するミッションを計画することである。
これは例えば、農地のモニタリングに関係している。
本稿では,UAV経路に適応して高精細なセマンティックセマンティックセマンティクスを得るオンライン計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-03-03T11:03:28Z) - Task-Oriented Image Transmission for Scene Classification in Unmanned
Aerial Systems [46.64800170644672]
シーン分類作業のための新しい航空画像伝送パラダイムを提案する。
画像やチャネル条件の認識を伴うセマンティックブロック伝送のための,フロントエンドUAV上での軽量モデルを開発した。
伝送遅延と分類精度のトレードオフを達成するために、深層強化学習を用いる。
論文 参考訳(メタデータ) (2021-12-21T02:44:49Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
本稿では,AVの最適決定を支援するために,マルコフ決定プロセス(MDP)に基づくインテリジェントな最適化フレームワークを提案する。
そこで我々は,近年の深層強化学習技術を活用した効果的な学習アルゴリズムを開発し,AVの最適方針を見出す。
提案手法は,従来の深部強化学習手法と比較して,AVによる障害物ミス検出確率を最大67%削減することを示す。
論文 参考訳(メタデータ) (2021-05-28T08:45:37Z) - Multi-UAV Path Planning for Wireless Data Harvesting with Deep
Reinforcement Learning [18.266087952180733]
本稿では,データ収集ミッションを定義するシナリオパラメータの深い変化に適応できるマルチエージェント強化学習(MARL)手法を提案する。
提案するネットワークアーキテクチャにより,データ収集タスクを慎重に分割することで,エージェントが効果的に協調できることを示す。
論文 参考訳(メタデータ) (2020-10-23T14:59:30Z) - Data Freshness and Energy-Efficient UAV Navigation Optimization: A Deep
Reinforcement Learning Approach [88.45509934702913]
我々は、移動基地局(BS)が配備される複数の無人航空機(UAV)のナビゲーションポリシーを設計する。
我々は、地上BSにおけるデータの鮮度を確保するために、エネルギーや情報年齢(AoI)の制約などの異なる文脈情報を組み込んだ。
提案したトレーニングモデルを適用することで、UAV-BSに対する効果的なリアルタイム軌道ポリシーは、時間とともに観測可能なネットワーク状態をキャプチャする。
論文 参考訳(メタデータ) (2020-02-21T07:29:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。