論文の概要: ATLAS: Adapter-Based Multi-Modal Continual Learning with a Two-Stage Learning Strategy
- arxiv url: http://arxiv.org/abs/2410.10923v1
- Date: Mon, 14 Oct 2024 13:29:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 14:04:27.877923
- Title: ATLAS: Adapter-Based Multi-Modal Continual Learning with a Two-Stage Learning Strategy
- Title(参考訳): ATLAS:2段階学習戦略による適応型マルチモーダル連続学習
- Authors: Hong Li, Zhiquan Tan, Xingyu Li, Weiran Huang,
- Abstract要約: 本稿では,経験ベース学習と新規知識拡張からなるマルチモーダル連続学習手法を提案する。
提案手法は,従来のタスクを忘れることによる負の影響を最小限に抑えつつ,上流での表現の分布を拡大する。
- 参考スコア(独自算出の注目度): 12.150065431702055
- License:
- Abstract: While vision-and-language models significantly advance in many fields, the challenge of continual learning is unsolved. Parameter-efficient modules like adapters and prompts present a promising way to alleviate catastrophic forgetting. However, existing works usually learn individual adapters for each task, which may result in redundant knowledge among adapters. Moreover, they continue to use the original pre-trained model to initialize the downstream model, leading to negligible changes in the model's generalization compared to the original model. In addition, there is still a lack of research investigating the consequences of integrating a multi-modal model into the updating procedure for both uni-modal and multi-modal tasks and the subsequent impacts it has on downstream tasks. In this paper, we propose an adapter-based two-stage learning paradigm, a multi-modal continual learning scheme that consists of experience-based learning and novel knowledge expansion, which helps the model fully use experience knowledge and compensate for novel knowledge. Extensive experiments demonstrate that our method is proficient for continual learning. It expands the distribution of representation upstream while also minimizing the negative impact of forgetting previous tasks. Additionally, it enhances the generalization capability for downstream tasks. Furthermore, we incorporate both multi-modal and uni-modal tasks into upstream continual learning. We observe that learning from upstream tasks can help with downstream tasks. Our code will be available at: https://github.com/lihong2303/ATLAS.
- Abstract(参考訳): 視覚・言語モデルは多くの分野において顕著に進歩するが、継続学習の課題は未解決である。
アダプタやプロンプトのようなパラメータ効率のよいモジュールは、破滅的な忘れを緩和する有望な方法を示す。
しかしながら、既存の研究は通常、各タスクの個別のアダプタを学習し、アダプタ間の冗長な知識をもたらす可能性がある。
さらに、元の事前学習モデルを使用して下流モデルを初期化し続け、元のモデルと比較してモデルの一般化が無視できる変化をもたらす。
さらに、単モーダルタスクと多モーダルタスクの両方の更新手順にマルチモーダルモデルを統合する結果と、それに続く下流タスクへの影響についての調査は、まだ不十分である。
本稿では,経験ベース学習と新規知識拡張からなるマルチモーダル連続学習方式である,アダプタベースの2段階学習パラダイムを提案する。
実験の結果,本手法は連続学習に長けていることが判明した。
上流での表現の分布を拡大し、以前のタスクを忘れることによる負の影響を最小限にする。
さらに、下流タスクの一般化機能も強化されている。
さらに,マルチモーダルタスクとユニモーダルタスクの両方を上流連続学習に組み込む。
上流タスクからの学習が下流タスクに役立つことを観察する。
私たちのコードは、https://github.com/lihong2303/ATLAS.comで利用可能です。
関連論文リスト
- Multi-Stage Knowledge Integration of Vision-Language Models for Continual Learning [79.46570165281084]
蒸留法における人間の学習過程をエミュレートするマルチステージ知識統合ネットワーク(MulKI)を提案する。
Mulkiは、イデオロギーの排除、新しいイデオロギーの追加、イデオロギーの排除、コネクティクスの作りという4つの段階を通じてこれを達成している。
提案手法は,下流タスク間の連続学習をサポートしながら,ゼロショット能力の維持における大幅な改善を示す。
論文 参考訳(メタデータ) (2024-11-11T07:36:19Z) - A Practitioner's Guide to Continual Multimodal Pretraining [83.63894495064855]
マルチモーダル・ファンデーション・モデルは視覚と言語を交わす多くのアプリケーションに役立っている。
モデルを更新し続けるために、継続事前トレーニングの研究は主に、大規模な新しいデータに対する頻度の低い、差別的な更新、あるいは頻繁に行われるサンプルレベルの更新のシナリオを探求する。
本稿では,FoMo-in-Flux(FoMo-in-Flux)について紹介する。
論文 参考訳(メタデータ) (2024-08-26T17:59:01Z) - Boosting Continual Learning of Vision-Language Models via Mixture-of-Experts Adapters [65.15700861265432]
本稿では,視覚言語モデルを用いた漸進的学習における長期的忘れを緩和するパラメータ効率の連続学習フレームワークを提案する。
提案手法では,Mixture-of-Experts (MoE)アダプタの統合により,事前学習したCLIPモデルの動的拡張を行う。
視覚言語モデルのゼロショット認識能力を維持するために,分布判別オートセレクタを提案する。
論文 参考訳(メタデータ) (2024-03-18T08:00:23Z) - Dynamic Transformer Architecture for Continual Learning of Multimodal
Tasks [27.59758964060561]
トランスフォーマーニューラルネットワークは、さまざまなデータモダリティの幅広いアプリケーションにおいて、以前のアーキテクチャを置き換える傾向にある。
連続学習(CL)は、自律学習エージェントに順次到着するタスク間で知識の伝達を容易にすることで、ソリューションとして現れる。
本稿では,視覚と言語の両方に関わる学習タスクに着目したトランスフォーマーベースのCLフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-27T03:03:30Z) - Generative Multimodal Models are In-Context Learners [60.50927925426832]
我々は37億のパラメータを持つ生成的マルチモーダルモデルであるEmu2を紹介し、大規模マルチモーダルシーケンスで訓練する。
Emu2は、マルチモーダルなインコンテキスト学習能力を示し、オンザフライ推論を必要とするタスクを解決しようとさえしている。
論文 参考訳(メタデータ) (2023-12-20T18:59:58Z) - Continual Instruction Tuning for Large Multimodal Models [30.438442723421556]
マルチタスク・ジョイント・インストラクション・チューニングはモデルの連続的な学習能力と忘れ忘れを促進させる。
LMMの連続的命令チューニングのためのタスク類似性インフォームド正規化とモデル拡張法を提案する。
論文 参考訳(メタデータ) (2023-11-27T15:04:48Z) - Learning Unseen Modality Interaction [54.23533023883659]
マルチモーダル学習は、すべてのモダリティの組み合わせが訓練中に利用でき、クロスモーダル対応を学ぶことを前提としている。
我々は、目に見えないモダリティ相互作用の問題を提起し、第1の解を導入する。
異なるモジュラリティの多次元的特徴を、豊富な情報を保存した共通空間に投影するモジュールを利用する。
論文 参考訳(メタデータ) (2023-06-22T10:53:10Z) - Revisiting Pre-training in Audio-Visual Learning [6.547660539954143]
事前学習したモデルが2つの音声視覚学習シナリオに与える影響について検討する。
対象タスクに対する事前学習モデルのキャパシティをよりよく活用するために,Adaptive Batchnorm Re-initialization (ABRi)を提案する。
論文 参考訳(メタデータ) (2023-02-07T15:34:14Z) - Provable Meta-Learning of Linear Representations [114.656572506859]
我々は、複数の関連するタスクから共通の機能の集合を学習し、その知識を新しい未知のタスクに転送する、という2つの課題に対処する、高速でサンプル効率のアルゴリズムを提供する。
また、これらの線形特徴を学習する際のサンプルの複雑さに関する情報理論の下限も提供する。
論文 参考訳(メタデータ) (2020-02-26T18:21:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。