論文の概要: Modality-Inconsistent Continual Learning of Multimodal Large Language Models
- arxiv url: http://arxiv.org/abs/2412.13050v1
- Date: Tue, 17 Dec 2024 16:13:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-18 14:02:30.225548
- Title: Modality-Inconsistent Continual Learning of Multimodal Large Language Models
- Title(参考訳): マルチモーダル大言語モデルのモダリティ-一貫性のない連続学習
- Authors: Weiguo Pian, Shijian Deng, Shentong Mo, Yunhui Guo, Yapeng Tian,
- Abstract要約: マルチモーダル大言語モデル(MLLM)のための新しい連続学習シナリオであるMICL(Modality-Inconsistent Continual Learning)を導入する。
既存の視覚のみやモダリティの増分設定とは異なり、MICLはモダリティとタスクタイプのシフトを組み合わせており、どちらも破滅的な忘れを招いている。
本稿では, Pseudo Targets Generation Module を用いて, 以前見られたタスクタイプシフトによる忘れを軽減した MoInCL を提案する。
- 参考スコア(独自算出の注目度): 37.15220266767881
- License:
- Abstract: In this paper, we introduce Modality-Inconsistent Continual Learning (MICL), a new continual learning scenario for Multimodal Large Language Models (MLLMs) that involves tasks with inconsistent modalities (image, audio, or video) and varying task types (captioning or question-answering). Unlike existing vision-only or modality-incremental settings, MICL combines modality and task type shifts, both of which drive catastrophic forgetting. To address these challenges, we propose MoInCL, which employs a Pseudo Targets Generation Module to mitigate forgetting caused by task type shifts in previously seen modalities. It also incorporates Instruction-based Knowledge Distillation to preserve the model's ability to handle previously learned modalities when new ones are introduced. We benchmark MICL using a total of six tasks and conduct experiments to validate the effectiveness of our proposed MoInCL. The experimental results highlight the superiority of MoInCL, showing significant improvements over representative and state-of-the-art continual learning baselines.
- Abstract(参考訳): 本稿では,Multimodal Large Language Models (MLLMs) の新しい連続学習シナリオであるModality-Inconsistent Continual Learning (MICL) を紹介する。
既存の視覚のみやモダリティの増分設定とは異なり、MICLはモダリティとタスクタイプのシフトを組み合わせており、どちらも破滅的な忘れを招いている。
これらの課題に対処するために,Pseudo Targets Generation Module を用いた MoInCL を提案する。
また、インストラクションベースの知識蒸留(Knowledge Distillation)を導入し、新しいモデルが導入されたときに、学習済みのモダリティを扱うモデルの能力を維持する。
我々は、合計6つのタスクを用いてMICLをベンチマークし、提案したMoInCLの有効性を検証する実験を行った。
実験の結果,MoInCLの優位性が強調され,代表的および最先端の学習ベースラインよりも顕著に改善された。
関連論文リスト
- Separable Mixture of Low-Rank Adaptation for Continual Visual Instruction Tuning [16.873306091966693]
視覚的インストラクションチューニングにより、大規模な言語モデル(MLLM)は、言語ベースのインストラクションとしてフレーミングすることで、幅広い視覚タスクを処理できる。
CVITでは,MLLMが学習した視覚的理解を忘れると同時に,学習能力の低下を経験する。
本稿では2つの異なるモジュール間の分離可能なルーティングを利用するSMOLoRAフレームワークについて紹介する。
このデュアルルーチン設計により、両方のドメインに特別な適応が可能となり、性能を改善しながら、忘れることを防ぐことができる。
論文 参考訳(メタデータ) (2024-11-21T09:00:15Z) - Can MLLMs Guide Weakly-Supervised Temporal Action Localization Tasks? [6.7065734065794835]
MLLM4WTALと呼ばれる新しい学習パラダイムを導入する。
MLLMのポテンシャルを利用して、時間的アクションキーセマンティクスと完全なセマンティクスの事前を提供する。
キーセマンティックマッチング(KSM)と完全セマンティック再構成(CSR)の2つの異なるモジュールを統合することでこれを実現できる。
論文 参考訳(メタデータ) (2024-11-13T09:37:24Z) - LLMs Can Evolve Continually on Modality for X-Modal Reasoning [62.2874638875554]
既存の手法は、モーダル固有の事前訓練とジョイント・モーダルチューニングに大きく依存しており、新しいモーダルへと拡張する際の計算上の負担が大きくなった。
PathWeaveは、Modal-Path sWitchingとExpAnsion機能を備えた柔軟でスケーラブルなフレームワークである。
PathWeaveは最先端のMLLMと互換性があり、パラメータトレーニングの負担を98.73%削減する。
論文 参考訳(メタデータ) (2024-10-26T13:19:57Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - MoExtend: Tuning New Experts for Modality and Task Extension [61.29100693866109]
MoExtendは、Mixture-of-Experts (MoE)モデルのモダリティ適応と拡張を効率化する効果的なフレームワークである。
MoExtendは、新しいエキスパートをトレーニング済みのMoEモデルにシームレスに統合し、トレーニング済みのモデルをチューニングすることなく、新しい知識を提供する。
論文 参考訳(メタデータ) (2024-08-07T02:28:37Z) - Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adapt adjust of language model based on specific downstream task。
提案手法は,様々なバックボーンやベンチマーク上での最先端性能を実証し,最小限の忘れを伴い,フルセットおよび少数ショットのシナリオにおいて効果的な連続学習を実現する。
論文 参考訳(メタデータ) (2024-04-11T04:22:15Z) - CoIN: A Benchmark of Continual Instruction tuNing for Multimodel Large Language Model [121.23360004498893]
逐次的命令チューニングパラダイムにおける既存のMLLMを評価するためのベンチマークであるContinuous Instruction tuNing(CoIN)を提案する。
CoINの実験では、現在の強力なMLLMが依然として破滅的な忘れを被っていることが示されている。
従来の命令アライメントを維持するのに有効なMLLMにMoELoRAを導入する。
論文 参考訳(メタデータ) (2024-03-13T08:54:31Z) - Model Composition for Multimodal Large Language Models [71.5729418523411]
本稿では,既存のMLLMのモデル構成による新しいパラダイムを提案する。
我々の基本的な実装であるNaiveMCは、モダリティエンコーダを再利用し、LLMパラメータをマージすることで、このパラダイムの有効性を実証する。
論文 参考訳(メタデータ) (2024-02-20T06:38:10Z) - Continual Instruction Tuning for Large Multimodal Models [30.438442723421556]
マルチタスク・ジョイント・インストラクション・チューニングはモデルの連続的な学習能力と忘れ忘れを促進させる。
LMMの連続的命令チューニングのためのタスク類似性インフォームド正規化とモデル拡張法を提案する。
論文 参考訳(メタデータ) (2023-11-27T15:04:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。