Federated Data-Efficient Instruction Tuning for Large Language Models
- URL: http://arxiv.org/abs/2410.10926v1
- Date: Mon, 14 Oct 2024 15:05:51 GMT
- Title: Federated Data-Efficient Instruction Tuning for Large Language Models
- Authors: Zhen Qin, Zhaomin Wu, Bingsheng He, Shuiguang Deng,
- Abstract summary: Federated data-efficient instruction tuning for large language models, FedHDS, is presented.
It reduces the redundancy of data samples at both intra-client and inter-client levels.
Experiments show that FedHDS significantly reduces the amount of data required for fine-tuning while improving the responsiveness of the instruction-tuned LLMs to unseen tasks.
- Score: 34.35613476734293
- License:
- Abstract: Instruction tuning helps improve pretrained large language models (LLMs) in terms of the responsiveness to human instructions, which is benefited from diversified instruction data. Federated learning extends the sources of instruction data by exploiting the diversified client-side data, making it increasingly popular for tuning LLMs. Existing approaches of federated LLM tuning typically traverse all local data during local training, bringing excessive computation overhead and posing a risk of overfitting local data. Thus, a federated data-efficient instruction tuning approach, which consumes relatively little data from the entire dataset, is needed. In response, this work introduces an approach of federated data-efficient instruction tuning for LLMs, FedHDS, which utilizes a representative subset of edge-side data, coreset, to tune the LLM. It reduces the redundancy of data samples at both intra-client and inter-client levels through a hierarchical data selection framework performed by jointly selecting a small number of representative data samples for local training without sharing the raw data. Extensive experiments conducted across six scenarios with various LLMs, datasets and data partitions demonstrate that FedHDS significantly reduces the amount of data required for fine-tuning while improving the responsiveness of the instruction-tuned LLMs to unseen tasks.
Related papers
- Efficient Alignment of Large Language Models via Data Sampling [0.4915744683251149]
We propose an information theory-based methodology for efficient alignment by identifying a small high quality subset.
We find that the model aligned using our proposed methodology outperforms other sampling methods and performs comparable to the model aligned with the full dataset.
arXiv Detail & Related papers (2024-11-15T19:36:15Z) - Data Quality Control in Federated Instruction-tuning of Large Language Models [43.29678396558287]
We propose a new framework of federated instruction tuning of large language models (LLMs) with data quality control (FedDQC)
Our approach introduces an efficient metric to assess each client's instruction-response alignment (IRA), identifying potentially noisy data through single-shot inference.
We conduct extensive experiments on 4 synthetic and a real-world dataset, and compare our method with baselines adapted from centralized setting.
arXiv Detail & Related papers (2024-10-15T12:14:57Z) - Entropy Law: The Story Behind Data Compression and LLM Performance [115.70395740286422]
We find that model performance is negatively correlated to the compression ratio of training data, which usually yields a lower training loss.
Based on the findings of the entropy law, we propose a quite efficient and universal data selection method.
We also present an interesting application of entropy law that can detect potential performance risks at the beginning of model training.
arXiv Detail & Related papers (2024-07-09T08:14:29Z) - LLM2LLM: Boosting LLMs with Novel Iterative Data Enhancement [79.31084387589968]
Pretrained large language models (LLMs) are currently state-of-the-art for solving the vast majority of natural language processing tasks.
We propose LLM2LLM, a data augmentation strategy that uses a teacher LLM to enhance a small seed dataset.
We achieve improvements up to 24.2% on the GSM8K dataset, 32.6% on CaseHOLD, 32.0% on SNIPS, 52.6% on TREC and 39.8% on SST-2 over regular fine-tuning in the low-data regime.
arXiv Detail & Related papers (2024-03-22T08:57:07Z) - RECOST: External Knowledge Guided Data-efficient Instruction Tuning [25.985023475991625]
We argue that most current data-efficient instruction-tuning methods are highly dependent on the quality of the original instruction-tuning dataset.
We propose a framework dubbed as textbfRECOST, which integrates external-knowledge-base re-ranking and diversity-consistent sampling into a single pipeline.
arXiv Detail & Related papers (2024-02-27T09:47:36Z) - Retrieval-Augmented Data Augmentation for Low-Resource Domain Tasks [66.87070857705994]
In low-resource settings, the amount of seed data samples to use for data augmentation is very small.
We propose a novel method that augments training data by incorporating a wealth of examples from other datasets.
This approach can ensure that the generated data is not only relevant but also more diverse than what could be achieved using the limited seed data alone.
arXiv Detail & Related papers (2024-02-21T02:45:46Z) - How to Train Data-Efficient LLMs [56.41105687693619]
We study data-efficient approaches for pre-training language models (LLMs)
We find that Ask-LLM and Density sampling are the best methods in their respective categories.
In our comparison of 19 samplers, involving hundreds of evaluation tasks and pre-training runs, we find that Ask-LLM and Density are the best methods in their respective categories.
arXiv Detail & Related papers (2024-02-15T02:27:57Z) - Reflection-Tuning: Data Recycling Improves LLM Instruction-Tuning [79.32236399694077]
Low-quality data in the training set are usually detrimental to instruction tuning.
We propose a novel method, termed "reflection-tuning"
This approach utilizes an oracle LLM to recycle the original training data by introspecting and enhancing the quality of instructions and responses in the data.
arXiv Detail & Related papers (2023-10-18T05:13:47Z) - MLLM-DataEngine: An Iterative Refinement Approach for MLLM [62.30753425449056]
We propose a novel closed-loop system that bridges data generation, model training, and evaluation.
Within each loop, the MLLM-DataEngine first analyze the weakness of the model based on the evaluation results.
For targeting, we propose an Adaptive Bad-case Sampling module, which adjusts the ratio of different types of data.
For quality, we resort to GPT-4 to generate high-quality data with each given data type.
arXiv Detail & Related papers (2023-08-25T01:41:04Z) - FedDRL: Deep Reinforcement Learning-based Adaptive Aggregation for
Non-IID Data in Federated Learning [4.02923738318937]
Uneven distribution of local data across different edge devices (clients) results in slow model training and accuracy reduction in federated learning.
This work introduces a novel non-IID type encountered in real-world datasets, namely cluster-skew.
We propose FedDRL, a novel FL model that employs deep reinforcement learning to adaptively determine each client's impact factor.
arXiv Detail & Related papers (2022-08-04T04:24:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.