Parsing altered brain connectivity in neurodevelopmental disorders by integrating graph-based normative modeling and deep generative networks
- URL: http://arxiv.org/abs/2410.11064v1
- Date: Mon, 14 Oct 2024 20:21:11 GMT
- Title: Parsing altered brain connectivity in neurodevelopmental disorders by integrating graph-based normative modeling and deep generative networks
- Authors: Rui Sherry Shen, Yusuf Osmanlıoğlu, Drew Parker, Darien Aunapu, Benjamin E. Yerys, Birkan Tunç, Ragini Verma,
- Abstract summary: We present a framework that integrates deep generative models with graph-based normative modeling to characterize brain network development in the neurotypical population.
Our deep generative model incorporates bio-inspired wiring constraints to effectively capture the developmental trajectories of neurotypical brain networks.
We demonstrate the clinical utility of this framework by applying it to a large sample of children with autism spectrum disorders.
- Score: 1.2115617129203957
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Many neurodevelopmental disorders can be understood as divergent patterns of neural interactions during brain development. Advances in neuroimaging have illuminated these patterns by modeling the brain as a network structure using diffution MRI tractography. However, characterizing and quantifying individual heterogeneity in neurodevelopmental disorders within these highly complex brain networks remains a significant challenge. In this paper, we present for the first time, a framework that integrates deep generative models with graph-based normative modeling to characterize brain network development in the neurotypical population, which can then be used to quantify the individual-level neurodivergence associated with disorders. Our deep generative model incorporates bio-inspired wiring constraints to effectively capture the developmental trajectories of neurotypical brain networks. Neurodivergence is quantified by comparing individuals to this neurotypical trajectory, enabling the creation of region-wise divergence maps that reveal latent developmental differences at each brain regions, along with overall neurodivergence scores based on predicted brain age gaps. We demonstrate the clinical utility of this framework by applying it to a large sample of children with autism spectrum disorders, showing that the individualized region-wise maps help parse the heterogeneity in autism, and the neurodivergence scores correlate with clinical assessments. Together, we provide powerful tools for quantifying neurodevelopmental divergence in brain networks, paying the way for developing imaging markers that will support disorder stratification, monitor progression, and evaluate therapeutic effectiveness.
Related papers
- Hyperbolic Kernel Graph Neural Networks for Neurocognitive Decline Analysis from Multimodal Brain Imaging [22.883290184028738]
This paper presents a hyperbolic kernel graph fusion framework for neurocognitive decline analysis with multimodal neuroimages.<n>It consists of a multimodal graph construction module, a graph representation learning module that encodes brain graphs in hyperbolic space, and a hyperbolic neural network for downstream predictions.
arXiv Detail & Related papers (2025-06-24T13:16:37Z) - Comorbidity-Informed Transfer Learning for Neuro-developmental Disorder Diagnosis [26.634912866633925]
Comorbidity-In Transfer Learning framework for neuro-developmental disorders using fMRI.
New reinforced representation generation network is proposed.
Results demonstrate that CITL achieves competitive accuracies of 76.32% and 73.15% for detecting autism spectrum disorder and attention deficit hyperactivity disorder.
arXiv Detail & Related papers (2025-04-13T07:30:55Z) - ASD Classification on Dynamic Brain Connectome using Temporal Random Walk with Transformer-based Dynamic Network Embedding [1.6044444452278062]
We propose BrainTWT, a novel dynamic network embedding approach that captures temporal evolution of the brain connectivity over time.
The experimental evaluation, utilizing the Autism Brain Imaging Data Exchange (ABIDE) dataset, demonstrates that BrainTWT outperforms baseline methods in ASD classification.
arXiv Detail & Related papers (2025-03-16T05:44:11Z) - BrainNet-MoE: Brain-Inspired Mixture-of-Experts Learning for Neurological Disease Identification [31.45078414913088]
The Lewy body dementia (LBD) is the second most common neurodegenerative dementia after Alzheimer's disease (AD)
Our work represents a pioneering effort in modeling system-level artificial neural network called BrainNet-MoE for brain modeling and diagnosing.
arXiv Detail & Related papers (2025-03-05T22:19:49Z) - NeuroTree: Hierarchical Functional Brain Pathway Decoding for Mental Health Disorders [8.693515007203429]
We propose NeuroTree to overcome limitations of existing fMRI-based graph convolutional networks.
NeuroTree integrates a k-hop AGE-GCN with neural ordinary differential equations (ODEs) to optimize functional connectivity.
Our empirical evaluations demonstrate that NeuroTree achieves state-of-the-art performance across two distinct mental disorder datasets.
arXiv Detail & Related papers (2025-02-26T03:42:58Z) - Explainable Brain Age Gap Prediction in Neurodegenerative Conditions using coVariance Neural Networks [94.06526659234756]
Black-box machine learning approaches to brain age gap prediction have limited practical utility.<n>We apply the VNN-based approach to study brain age gap using cortical thickness features for various prevalent neurodegenerative conditions.<n>Our results reveal distinct anatomic patterns for brain age gap in Alzheimer's disease, frontotemporal dementia, and atypical Parkinsonian disorders.
arXiv Detail & Related papers (2025-01-02T19:37:09Z) - Towards the Discovery of Down Syndrome Brain Biomarkers Using Generative Models [0.0]
We evaluate state-of-the-art brain anomaly detection models based on Variational Autoencoders and Diffusion Models.
Our findings indicate that some models effectively detect the primary alterations characterizing Down syndrome's brain anatomy.
arXiv Detail & Related papers (2024-09-20T12:01:15Z) - CATD: Unified Representation Learning for EEG-to-fMRI Cross-Modal Generation [6.682531937245544]
This paper proposes the Condition-Aligned Temporal Diffusion (CATD) framework for end-to-end cross-modal synthesis of neuroimaging.
The proposed framework establishes a new paradigm for cross-modal synthesis of neuroimaging.
It shows promise in medical applications such as improving Parkinson's disease prediction and identifying abnormal brain regions.
arXiv Detail & Related papers (2024-07-16T11:31:38Z) - Large Language Model-based FMRI Encoding of Language Functions for Subjects with Neurocognitive Disorder [53.575426835313536]
This paper explores language-related functional changes in older NCD adults using LLM-based fMRI encoding and brain scores.
We analyze the correlation between brain scores and cognitive scores at both whole-brain and language-related ROI levels.
Our findings reveal that higher cognitive abilities correspond to better brain scores, with correlations peaking in the middle temporal gyrus.
arXiv Detail & Related papers (2024-07-15T01:09:08Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - Towards a Foundation Model for Brain Age Prediction using coVariance
Neural Networks [102.75954614946258]
Increasing brain age with respect to chronological age can reflect increased vulnerability to neurodegeneration and cognitive decline.
NeuroVNN is pre-trained as a regression model on healthy population to predict chronological age.
NeuroVNN adds anatomical interpretability to brain age and has a scale-free' characteristic that allows its transference to datasets curated according to any arbitrary brain atlas.
arXiv Detail & Related papers (2024-02-12T14:46:31Z) - Exploring General Intelligence via Gated Graph Transformer in Functional
Connectivity Studies [39.82681427764513]
Gated Graph Transformer (GGT) framework designed to predict cognitive metrics based on Functional Connectivity (FC)
Empirical validation on the Philadelphia Neurodevelopmental Cohort (PNC) underscores the superior predictive prowess of our model.
arXiv Detail & Related papers (2024-01-18T19:28:26Z) - Dimensional Neuroimaging Endophenotypes: Neurobiological Representations
of Disease Heterogeneity Through Machine Learning [11.653182438505558]
We first present a systematic literature overview of studies using machine learning and multimodal MRI to unravel disease heterogeneity in various neuropsychiatric and neurodegenerative disorders.
We then summarize relevant machine learning methodologies and discuss an emerging paradigm which we call dimensional neuroimaging endophenotype (DNE)
DNE dissects the neurobiological heterogeneity of neuropsychiatric and neurodegenerative disorders into a low dimensional yet informative, quantitative brain phenotypic representation.
arXiv Detail & Related papers (2024-01-17T16:31:48Z) - Deep learning reveals the common spectrum underlying multiple brain
disorders in youth and elders from brain functional networks [53.257804915263165]
Brain disorders in the early and late life of humans potentially share pathological alterations in brain functions.
Key evidence from neuroimaging data for pathological commonness remains unrevealed.
We build a deep learning model, using multi-site functional magnetic resonance imaging data, for classifying 5 different brain disorders from healthy controls.
arXiv Detail & Related papers (2023-02-23T09:22:05Z) - DBGDGM: Dynamic Brain Graph Deep Generative Model [63.23390833353625]
Graphs are a natural representation of brain activity derived from functional magnetic imaging (fMRI) data.
It is well known that clusters of anatomical brain regions, known as functional connectivity networks (FCNs), encode temporal relationships which can serve as useful biomarkers for understanding brain function and dysfunction.
Previous works, however, ignore the temporal dynamics of the brain and focus on static graphs.
We propose a dynamic brain graph deep generative model (DBGDGM) which simultaneously clusters brain regions into temporally evolving communities and learns dynamic unsupervised node embeddings.
arXiv Detail & Related papers (2023-01-26T20:45:30Z) - Pathology Steered Stratification Network for Subtype Identification in
Alzheimer's Disease [7.594681424335177]
Alzheimers disease (AD) is a heterogeneous, multitemporal neurodegenerative disorder characterized by beta-amyloid, pathologic tau, and neurodegeneration.
We propose a novel pathology steered stratification network (PSSN) that incorporates established domain knowledge in AD pathology through a reaction-diffusion model.
arXiv Detail & Related papers (2022-10-12T02:52:00Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
Characterizing the subtle changes of functional brain networks associated with Alzheimer's disease (AD) is important for early diagnosis and prediction of disease progression.
We developed a new deep learning method, termed multiple graph Gaussian embedding model (MG2G)
We used MG2G to detect the intrinsic latent dimensionality of MEG brain networks, predict the progression of patients with mild cognitive impairment (MCI) to AD, and identify brain regions with network alterations related to MCI.
arXiv Detail & Related papers (2020-05-08T02:29:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.