StopThePop: Sorted Gaussian Splatting for View-Consistent Real-time Rendering
- URL: http://arxiv.org/abs/2402.00525v3
- Date: Wed, 09 Oct 2024 12:57:43 GMT
- Title: StopThePop: Sorted Gaussian Splatting for View-Consistent Real-time Rendering
- Authors: Lukas Radl, Michael Steiner, Mathias Parger, Alexander Weinrauch, Bernhard Kerbl, Markus Steinberger,
- Abstract summary: We present a novel hierarchicalization approach that culls splats with minimal processing overhead.
Our approach is only 4% slower on average than the original Gaussian Splatting.
rendering performance is nearly doubled, making our approach 1.6x faster than the original Gaussian Splatting.
- Score: 42.91830228828405
- License:
- Abstract: Gaussian Splatting has emerged as a prominent model for constructing 3D representations from images across diverse domains. However, the efficiency of the 3D Gaussian Splatting rendering pipeline relies on several simplifications. Notably, reducing Gaussian to 2D splats with a single view-space depth introduces popping and blending artifacts during view rotation. Addressing this issue requires accurate per-pixel depth computation, yet a full per-pixel sort proves excessively costly compared to a global sort operation. In this paper, we present a novel hierarchical rasterization approach that systematically resorts and culls splats with minimal processing overhead. Our software rasterizer effectively eliminates popping artifacts and view inconsistencies, as demonstrated through both quantitative and qualitative measurements. Simultaneously, our method mitigates the potential for cheating view-dependent effects with popping, ensuring a more authentic representation. Despite the elimination of cheating, our approach achieves comparable quantitative results for test images, while increasing the consistency for novel view synthesis in motion. Due to its design, our hierarchical approach is only 4% slower on average than the original Gaussian Splatting. Notably, enforcing consistency enables a reduction in the number of Gaussians by approximately half with nearly identical quality and view-consistency. Consequently, rendering performance is nearly doubled, making our approach 1.6x faster than the original Gaussian Splatting, with a 50% reduction in memory requirements.
Related papers
- MCGS: Multiview Consistency Enhancement for Sparse-View 3D Gaussian Radiance Fields [73.49548565633123]
Radiance fields represented by 3D Gaussians excel at synthesizing novel views, offering both high training efficiency and fast rendering.
Existing methods often incorporate depth priors from dense estimation networks but overlook the inherent multi-view consistency in input images.
We propose a view framework based on 3D Gaussian Splatting, named MCGS, enabling scene reconstruction from sparse input views.
arXiv Detail & Related papers (2024-10-15T08:39:05Z) - Few-shot Novel View Synthesis using Depth Aware 3D Gaussian Splatting [0.0]
3D Gaussian splatting has surpassed neural radiance field methods in novel view synthesis.
It produces a high-quality rendering with a lot of input views, but its performance drops significantly when only a few views are available.
We propose a depth-aware Gaussian splatting method for few-shot novel view synthesis.
arXiv Detail & Related papers (2024-10-14T20:42:30Z) - Efficient Perspective-Correct 3D Gaussian Splatting Using Hybrid Transparency [6.119688280076556]
3D Gaussians (3DGS) have proven a versatile rendering primitive, both for inverse rendering and real-time exploration of scenes.
Recent work started mitigating artifacts that break multi-view coherence, including popping artifacts due to inconsistent transparency sorting and perspective-correct outlines of (2D) splats.
In our work, we aim at achieving maximum coherence, by rendering fully perspective-correct 3D Gaussians while using a high-quality approximation of accurate blending, hybrid transparency, on a per-pixel level, in order to retain real-time frame rates.
arXiv Detail & Related papers (2024-10-10T17:14:16Z) - AdR-Gaussian: Accelerating Gaussian Splatting with Adaptive Radius [38.774337140911044]
3D Gaussian Splatting (3DGS) is a recent explicit 3D representation that has achieved high-quality reconstruction and real-time rendering of complex scenes.
We propose AdR-Gaussian, which moves part of serial culling in Render stage into the earlier Preprocess stage to enable parallel culling.
Our contributions are threefold, achieving a rendering speed of 310% while maintaining equivalent or even better quality than the state-of-the-art.
arXiv Detail & Related papers (2024-09-13T09:32:38Z) - SafeguardGS: 3D Gaussian Primitive Pruning While Avoiding Catastrophic Scene Destruction [45.654397516679495]
3DGS has made a significant stride in novel view synthesis, demonstrating top-notch rendering quality while achieving real-time rendering speed.
The excessively large number of Gaussian primitives resulting from 3DGS' suboptimal densification process poses a major challenge, slowing down frame-per-second (FPS) and demanding considerable memory cost.
We first categorize 3DGS pruning techniques into two types: Cross-view pruning and pixel-wise pruning, which differ in their approaches to rank primitives.
arXiv Detail & Related papers (2024-05-28T03:41:36Z) - CompGS: Efficient 3D Scene Representation via Compressed Gaussian Splatting [68.94594215660473]
We propose an efficient 3D scene representation, named Compressed Gaussian Splatting (CompGS)
We exploit a small set of anchor primitives for prediction, allowing the majority of primitives to be encapsulated into highly compact residual forms.
Experimental results show that the proposed CompGS significantly outperforms existing methods, achieving superior compactness in 3D scene representation without compromising model accuracy and rendering quality.
arXiv Detail & Related papers (2024-04-15T04:50:39Z) - MVSplat: Efficient 3D Gaussian Splatting from Sparse Multi-View Images [102.7646120414055]
We introduce MVSplat, an efficient model that, given sparse multi-view images as input, predicts clean feed-forward 3D Gaussians.
On the large-scale RealEstate10K and ACID benchmarks, MVSplat achieves state-of-the-art performance with the fastest feed-forward inference speed (22fps)
arXiv Detail & Related papers (2024-03-21T17:59:58Z) - HiFi4G: High-Fidelity Human Performance Rendering via Compact Gaussian
Splatting [48.59338619051709]
HiFi4G is an explicit and compact Gaussian-based approach for high-fidelity human performance rendering from dense footage.
It achieves a substantial compression rate of approximately 25 times, with less than 2MB of storage per frame.
arXiv Detail & Related papers (2023-12-06T12:36:53Z) - GPS-Gaussian: Generalizable Pixel-wise 3D Gaussian Splatting for Real-time Human Novel View Synthesis [70.24111297192057]
We present a new approach, termed GPS-Gaussian, for synthesizing novel views of a character in a real-time manner.
The proposed method enables 2K-resolution rendering under a sparse-view camera setting.
arXiv Detail & Related papers (2023-12-04T18:59:55Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
We introduce textbfGS-SLAM that first utilizes 3D Gaussian representation in the Simultaneous Localization and Mapping system.
Our method utilizes a real-time differentiable splatting rendering pipeline that offers significant speedup to map optimization and RGB-D rendering.
Our method achieves competitive performance compared with existing state-of-the-art real-time methods on the Replica, TUM-RGBD datasets.
arXiv Detail & Related papers (2023-11-20T12:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.