論文の概要: Mimetic Initialization Helps State Space Models Learn to Recall
- arxiv url: http://arxiv.org/abs/2410.11135v1
- Date: Mon, 14 Oct 2024 23:17:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 14:03:51.404479
- Title: Mimetic Initialization Helps State Space Models Learn to Recall
- Title(参考訳): ミメティック初期化は、状態空間モデルをリコールするのに役立つ
- Authors: Asher Trockman, Hrayr Harutyunyan, J. Zico Kolter, Sanjiv Kumar, Srinadh Bhojanapalli,
- Abstract要約: 最近の研究で、Mambaのような状態空間モデルは、リコールベースのタスクではTransformerよりもかなり悪いことが示されている。
本研究は, 基本容量制約よりもトレーニングの難しさが原因で, コピー・リコール性能が低下する可能性について検討する。
- 参考スコア(独自算出の注目度): 81.43140985343358
- License:
- Abstract: Recent work has shown that state space models such as Mamba are significantly worse than Transformers on recall-based tasks due to the fact that their state size is constant with respect to their input sequence length. But in practice, state space models have fairly large state sizes, and we conjecture that they should be able to perform much better at these tasks than previously reported. We investigate whether their poor copying and recall performance could be due in part to training difficulties rather than fundamental capacity constraints. Based on observations of their "attention" maps, we propose a structured initialization technique that allows state space layers to more readily mimic attention. Across a variety of architecture settings, our initialization makes it substantially easier for Mamba to learn to copy and do associative recall from scratch.
- Abstract(参考訳): 近年の研究では、状態サイズが入力シーケンス長に対して一定であるという事実から、Mambaのような状態空間モデルは、リコールベースタスクのトランスフォーマーよりもはるかに悪いことが示されている。
しかし実際には、状態空間モデルはかなり大きな状態サイズを持ち、以前報告されたよりもはるかに優れたタスクをこなせるはずだと推測する。
本研究は, 基本容量制約よりもトレーニングの難しさが原因で, コピー・リコール性能が低下する可能性について検討する。
それらの「注意」マップの観測に基づいて、状態空間層がより容易に注意を反映できる構造化初期化手法を提案する。
さまざまなアーキテクチャ設定の中で、初期化によって、Mambaはスクラッチから連想的リコールをコピーし実行することを学びやすくなります。
関連論文リスト
- Taipan: Efficient and Expressive State Space Language Models with Selective Attention [100.16383527459429]
自然言語処理(NLP)における長文言語モデリングの課題
Mambaのような最近のステートスペースモデル(SSM)は、メモリ使用量を一定に抑える代替手段を提供するが、大規模なコンテキスト内検索を必要とするタスクでは性能が劣る。
我々は,Mamba-2と選択注意層(SAL)を組み合わせた新しいハイブリッドアーキテクチャであるTaipanを紹介する。
我々の実験は、様々なスケールやタスクにまたがる優れたパフォーマンスを示し、より効率的な長文言語モデリングのための有望なソリューションを提供する。
論文 参考訳(メタデータ) (2024-10-24T09:25:37Z) - Revealing and Mitigating the Local Pattern Shortcuts of Mamba [25.19835905377437]
この問題に対処するために,グローバルな選択モジュールをMambaモデルに導入する。
提案手法では,4M余剰パラメータの導入により,分散情報を用いたタスクにおいて,Mambaモデル(130M)が大幅な改善を実現することができる。
論文 参考訳(メタデータ) (2024-10-21T06:42:11Z) - OccMamba: Semantic Occupancy Prediction with State Space Models [16.646162677831985]
我々はOccMambaと呼ばれる意味的占有予測のための最初のMambaベースのネットワークを提示する。
単純で効果的な3D-to-1Dリオーダー操作,すなわち高さ優先の2Dヒルベルト展開を提案する。
OccMambaは、3つの一般的な占有予測ベンチマークで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-08-19T10:07:00Z) - B'MOJO: Hybrid State Space Realizations of Foundation Models with Eidetic and Fading Memory [91.81390121042192]
我々はB'MOJOと呼ばれるモデル群を開発し、構成可能なモジュール内で理想的メモリと暗黙的メモリをシームレスに結合する。
B'MOJOのイデオティックメモリとフェードメモリを変調する能力は、32Kトークンまでテストされた長いシーケンスの推論をより良くする。
論文 参考訳(メタデータ) (2024-07-08T18:41:01Z) - Simple linear attention language models balance the recall-throughput
tradeoff [40.08746299497935]
線形およびすべり窓の注意を結合したシンプルなアーキテクチャであるBASEDを提案する。
我々は、最大1.3bパラメータの言語モデルをトレーニングし、BASEDがパープレキシティにおいて最強のサブクワッドラティックモデルと一致し、実世界のリコール集約タスクにおいて6.22の精度ポイントでそれらのモデルを上回っていることを示す。
論文 参考訳(メタデータ) (2024-02-28T19:28:27Z) - PointMamba: A Simple State Space Model for Point Cloud Analysis [65.59944745840866]
我々は、最近の代表的状態空間モデル(SSM)であるMambaの成功を、NLPからポイントクラウド分析タスクへ転送するPointMambaを提案する。
従来のトランスフォーマーとは異なり、PointMambaは線形複雑性アルゴリズムを採用し、グローバルなモデリング能力を示しながら計算コストを大幅に削減する。
論文 参考訳(メタデータ) (2024-02-16T14:56:13Z) - Repeat After Me: Transformers are Better than State Space Models at Copying [53.47717661441142]
一般化された状態空間モデルは、推論時間効率の観点からは有望であるが、入力コンテキストからのコピーを必要とするタスクのトランスフォーマーモデルと比較して限定的であることを示す。
論文 参考訳(メタデータ) (2024-02-01T21:44:11Z) - Mamba: Linear-Time Sequence Modeling with Selective State Spaces [31.985243136674146]
ファンデーションモデルは、ほぼ普遍的にTransformerアーキテクチャとコアアテンションモジュールに基づいている。
このようなモデルの重大な弱点は、コンテンツベースの推論を実行できないことである。
我々はこれらの選択的なSSMを、注意やブロック(Mamba)を使わずに、単純化されたエンドツーエンドニューラルネットワークアーキテクチャに統合する(Mamba)。
一般的なシーケンスモデルバックボーンとして、Mambaは言語、オーディオ、ゲノミクスといったいくつかのモードで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-12-01T18:01:34Z) - Sparse Graphical Memory for Robust Planning [93.39298821537197]
スパースメモリに状態と実現可能な遷移を格納する新しいデータ構造であるスパースグラフィカルメモリ(SGM)を導入する。
SGMは、ゴール条件付きRLに古典的状態集約基準を適用し、新しい双方向整合目標に従って状態を集約する。
本研究では, SGM が, 遠近法, スパース・リワード視覚ナビゲーションタスクにおいて, 最先端の工法を著しく上回っていることを示す。
論文 参考訳(メタデータ) (2020-03-13T17:59:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。