Error Diffusion: Post Training Quantization with Block-Scaled Number Formats for Neural Networks
- URL: http://arxiv.org/abs/2410.11203v1
- Date: Tue, 15 Oct 2024 02:40:50 GMT
- Title: Error Diffusion: Post Training Quantization with Block-Scaled Number Formats for Neural Networks
- Authors: Alireza Khodamoradi, Kristof Denolf, Eric Dellinger,
- Abstract summary: Quantization reduces the model's hardware costs, such as data movement, storage, and operations like multiply and addition.
More exotic numerical encodings, such as block-scaled number formats, have shown advantages for utilizing a fixed bit budget to encode model parameters.
This paper presents error diffusion (ED) for post-training quantization with support for block-scaled data formats.
- Score: 1.042733720689638
- License:
- Abstract: Quantization reduces the model's hardware costs, such as data movement, storage, and operations like multiply and addition. It also affects the model's behavior by degrading the output quality. Therefore, there is a need for methods that preserve the model's behavior when quantizing model parameters. More exotic numerical encodings, such as block-scaled number formats, have shown advantages for utilizing a fixed bit budget to encode model parameters. This paper presents error diffusion (ED), a hyperparameter-free method for post-training quantization with support for block-scaled data formats. Our approach does not rely on backpropagation or Hessian information. We describe how to improve the quantization process by viewing the neural model as a composite function and diffusing the quantization error in every layer. In addition, we introduce TensorCast, an open-source library based on PyTorch to emulate a variety of number formats, including the block-scaled ones, to aid the research in neural model quantization. We demonstrate the efficacy of our algorithm through rigorous testing on various architectures, including vision and large language models (LLMs), where it consistently delivers competitive results. Our experiments confirm that block-scaled data formats provide a robust choice for post-training quantization and could be used effectively to enhance the practical deployment of advanced neural networks.
Related papers
- Diffusion Product Quantization [18.32568431229839]
We explore the quantization of diffusion models in extreme compression regimes to reduce model size while maintaining performance.
We apply our compression method to the DiT model on ImageNet and consistently outperform other quantization approaches.
arXiv Detail & Related papers (2024-11-19T07:47:37Z) - Augmenting Hessians with Inter-Layer Dependencies for Mixed-Precision
Post-Training Quantization [7.392278887917975]
We propose a mixed-precision post training quantization approach that assigns different numerical precisions to tensors in a network based on their specific needs.
Our experiments demonstrate latency reductions compared to a 16-bit baseline of $25.48%$, $21.69%$, and $33.28%$ respectively.
arXiv Detail & Related papers (2023-06-08T02:18:58Z) - Post-training Model Quantization Using GANs for Synthetic Data
Generation [57.40733249681334]
We investigate the use of synthetic data as a substitute for the calibration with real data for the quantization method.
We compare the performance of models quantized using data generated by StyleGAN2-ADA and our pre-trained DiStyleGAN, with quantization using real data and an alternative data generation method based on fractal images.
arXiv Detail & Related papers (2023-05-10T11:10:09Z) - A priori compression of convolutional neural networks for wave
simulators [0.0]
The present neural network designs include millions of parameters, which makes it difficult to install such complex models on devices that have limited memory.
We propose a compressed tensor format of convolutional layer, a priori, before the training of the neural network.
We show that the proposed convolutinal compression technique achieves equivalent performance as classical convolutional layers with fewer trainable parameters and lower memory footprint.
arXiv Detail & Related papers (2023-04-11T04:18:59Z) - ClusterQ: Semantic Feature Distribution Alignment for Data-Free
Quantization [111.12063632743013]
We propose a new and effective data-free quantization method termed ClusterQ.
To obtain high inter-class separability of semantic features, we cluster and align the feature distribution statistics.
We also incorporate the intra-class variance to solve class-wise mode collapse.
arXiv Detail & Related papers (2022-04-30T06:58:56Z) - Dynamically-Scaled Deep Canonical Correlation Analysis [77.34726150561087]
Canonical Correlation Analysis (CCA) is a method for feature extraction of two views by finding maximally correlated linear projections of them.
We introduce a novel dynamic scaling method for training an input-dependent canonical correlation model.
arXiv Detail & Related papers (2022-03-23T12:52:49Z) - Learning Summary Statistics for Bayesian Inference with Autoencoders [58.720142291102135]
We use the inner dimension of deep neural network based Autoencoders as summary statistics.
To create an incentive for the encoder to encode all the parameter-related information but not the noise, we give the decoder access to explicit or implicit information that has been used to generate the training data.
arXiv Detail & Related papers (2022-01-28T12:00:31Z) - MoEfication: Conditional Computation of Transformer Models for Efficient
Inference [66.56994436947441]
Transformer-based pre-trained language models can achieve superior performance on most NLP tasks due to large parameter capacity, but also lead to huge computation cost.
We explore to accelerate large-model inference by conditional computation based on the sparse activation phenomenon.
We propose to transform a large model into its mixture-of-experts (MoE) version with equal model size, namely MoEfication.
arXiv Detail & Related papers (2021-10-05T02:14:38Z) - ECQ$^{\text{x}}$: Explainability-Driven Quantization for Low-Bit and
Sparse DNNs [13.446502051609036]
We develop and describe a novel quantization paradigm for deep neural networks (DNNs)
Our method leverages concepts of explainable AI (XAI) and concepts of information theory.
The ultimate goal is to preserve the most relevant weights in quantization clusters of highest information content.
arXiv Detail & Related papers (2021-09-09T12:57:06Z) - Zero-shot Adversarial Quantization [11.722728148523366]
We propose a zero-shot adversarial quantization (ZAQ) framework, facilitating effective discrepancy estimation and knowledge transfer.
This is achieved by a novel two-level discrepancy modeling to drive a generator to synthesize informative and diverse data examples.
We conduct extensive experiments on three fundamental vision tasks, demonstrating the superiority of ZAQ over the strong zero-shot baselines.
arXiv Detail & Related papers (2021-03-29T01:33:34Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
Quantization neural networks (QNNs) are very attractive to the industry because their extremely cheap calculation and storage overhead, but their performance is still worse than that of networks with full-precision parameters.
Most of existing methods aim to enhance performance of QNNs especially binary neural networks by exploiting more effective training techniques.
We address this problem by projecting features in original full-precision networks to high-dimensional quantization features.
arXiv Detail & Related papers (2020-02-03T04:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.