Cross-Dataset Generalization in Deep Learning
- URL: http://arxiv.org/abs/2410.11207v1
- Date: Tue, 15 Oct 2024 02:48:21 GMT
- Title: Cross-Dataset Generalization in Deep Learning
- Authors: Xuyu Zhang, Haofan Huang, Dawei Zhang, Songlin Zhuang, Shensheng Han, Puxiang Lai, Honglin Liu,
- Abstract summary: Deep learning has been extensively used in various fields, such as phase imaging, 3D imaging reconstruction, phase unwrapping, and laser speckle reduction.
Its data-driven nature allows for implicit construction of mathematical relationships within the network through training with abundant data.
A critical challenge in practical applications is the generalization issue, where a network trained on one dataset struggles to recognize an unknown target from a different dataset.
- Score: 4.706219235601874
- License:
- Abstract: Deep learning has been extensively used in various fields, such as phase imaging, 3D imaging reconstruction, phase unwrapping, and laser speckle reduction, particularly for complex problems that lack analytic models. Its data-driven nature allows for implicit construction of mathematical relationships within the network through training with abundant data. However, a critical challenge in practical applications is the generalization issue, where a network trained on one dataset struggles to recognize an unknown target from a different dataset. In this study, we investigate imaging through scattering media and discover that the mathematical relationship learned by the network is an approximation dependent on the training dataset, rather than the true mapping relationship of the model. We demonstrate that enhancing the diversity of the training dataset can improve this approximation, thereby achieving generalization across different datasets, as the mapping relationship of a linear physical model is independent of inputs. This study elucidates the nature of generalization across different datasets and provides insights into the design of training datasets to ultimately address the generalization issue in various deep learning-based applications.
Related papers
- Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
We propose a generative Bayesian network to produce diverse synthetic scenes with real-world patterns.
A series of experiments robustly display our method's consistent superiority over existing state-of-the-art pre-training approaches.
arXiv Detail & Related papers (2024-06-17T07:43:53Z) - Learning Divergence Fields for Shift-Robust Graph Representations [73.11818515795761]
In this work, we propose a geometric diffusion model with learnable divergence fields for the challenging problem with interdependent data.
We derive a new learning objective through causal inference, which can guide the model to learn generalizable patterns of interdependence that are insensitive across domains.
arXiv Detail & Related papers (2024-06-07T14:29:21Z) - Harnessing Synthetic Datasets: The Role of Shape Bias in Deep Neural
Network Generalization [27.39922946288783]
We investigate how neural networks exhibit shape bias during training on synthetic datasets.
Shape bias varies across network architectures and types of supervision.
We propose a novel interpretation of shape bias as a tool for estimating the diversity of samples within a dataset.
arXiv Detail & Related papers (2023-11-10T18:25:44Z) - Homological Convolutional Neural Networks [4.615338063719135]
We propose a novel deep learning architecture that exploits the data structural organization through topologically constrained network representations.
We test our model on 18 benchmark datasets against 5 classic machine learning and 3 deep learning models.
arXiv Detail & Related papers (2023-08-26T08:48:51Z) - Visual Analytics of Multivariate Networks with Representation Learning and Composite Variable Construction [19.265502727154473]
This paper presents a visual analytics workflow for studying multivariate networks.
It consists of a neural-network-based learning phase to classify the data, a dimensionality reduction and optimization phase, and an interpreting phase conducted by the user.
A key part of our design is a composite variable construction step that remodels nonlinear features obtained by neural networks into linear features that are intuitive to interpret.
arXiv Detail & Related papers (2023-03-16T18:31:18Z) - Towards a mathematical understanding of learning from few examples with
nonlinear feature maps [68.8204255655161]
We consider the problem of data classification where the training set consists of just a few data points.
We reveal key relationships between the geometry of an AI model's feature space, the structure of the underlying data distributions, and the model's generalisation capabilities.
arXiv Detail & Related papers (2022-11-07T14:52:58Z) - CHALLENGER: Training with Attribution Maps [63.736435657236505]
We show that utilizing attribution maps for training neural networks can improve regularization of models and thus increase performance.
In particular, we show that our generic domain-independent approach yields state-of-the-art results in vision, natural language processing and on time series tasks.
arXiv Detail & Related papers (2022-05-30T13:34:46Z) - Learning from few examples with nonlinear feature maps [68.8204255655161]
We explore the phenomenon and reveal key relationships between dimensionality of AI model's feature space, non-degeneracy of data distributions, and the model's generalisation capabilities.
The main thrust of our present analysis is on the influence of nonlinear feature transformations mapping original data into higher- and possibly infinite-dimensional spaces on the resulting model's generalisation capabilities.
arXiv Detail & Related papers (2022-03-31T10:36:50Z) - Enhancing ensemble learning and transfer learning in multimodal data
analysis by adaptive dimensionality reduction [10.646114896709717]
In multimodal data analysis, not all observations would show the same level of reliability or information quality.
We propose an adaptive approach for dimensionality reduction to overcome this issue.
We test our approach on multimodal datasets acquired in diverse research fields.
arXiv Detail & Related papers (2021-05-08T11:53:12Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.