論文の概要: Beyond Linear Approximations: A Novel Pruning Approach for Attention Matrix
- arxiv url: http://arxiv.org/abs/2410.11261v1
- Date: Tue, 15 Oct 2024 04:35:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 14:04:34.969697
- Title: Beyond Linear Approximations: A Novel Pruning Approach for Attention Matrix
- Title(参考訳): 線形近似を超えて: 注意行列の新しい解析手法
- Authors: Yingyu Liang, Jiangxuan Long, Zhenmei Shi, Zhao Song, Yufa Zhou,
- Abstract要約: 大きな言語モデル(LLM)は、私たちの日常生活の様々な側面を強化する大きな可能性を示しています。
彼らの成長する能力は、非常に大きなモデルサイズを犠牲にし、エッジデバイスへのデプロイメントを困難にしている。
本稿では,注目行列の近似を直接最適化する LLM 重み付け手法を提案する。
- 参考スコア(独自算出の注目度): 17.086679273053853
- License:
- Abstract: Large Language Models (LLMs) have shown immense potential in enhancing various aspects of our daily lives, from conversational AI to search and AI assistants. However, their growing capabilities come at the cost of extremely large model sizes, making deployment on edge devices challenging due to memory and computational constraints. This paper introduces a novel approach to LLM weight pruning that directly optimizes for approximating the attention matrix, a core component of transformer architectures. Unlike existing methods that focus on linear approximations, our approach accounts for the non-linear nature of the Softmax attention mechanism. We provide theoretical guarantees for the convergence of our Gradient Descent-based optimization method to a near-optimal pruning mask solution. Our preliminary empirical results demonstrate the effectiveness of this approach in maintaining model performance while significantly reducing computational costs. This work establishes a new theoretical foundation for pruning algorithm design in LLMs, potentially paving the way for more efficient LLM inference on resource-constrained devices.
- Abstract(参考訳): 大きな言語モデル(LLM)は、会話型AIから検索やAIアシスタントまで、私たちの日常生活のさまざまな側面を強化する大きな可能性を示しています。
しかし、その増大する能力は、非常に大きなモデルサイズを犠牲にしており、メモリと計算の制約のためにエッジデバイスへのデプロイを困難にしている。
本稿では, トランスアーキテクチャのコアコンポーネントであるアテンション行列の近似を直接最適化する, LLMウェイトプルーニングへの新しいアプローチを提案する。
線形近似に焦点をあてる既存の手法とは異なり、我々の手法はソフトマックスの注意機構の非線形の性質を考慮に入れている。
我々は,グラディエントDescentに基づく最適化手法の近似最適プルーニングマスク解への収束を理論的に保証する。
予備実験により, 計算コストを大幅に削減しつつ, モデル性能維持における本手法の有効性を実証した。
この研究は、LLMにおけるプルーニングアルゴリズム設計の新たな理論的基盤を確立し、リソース制約のあるデバイス上でのより効率的なLLM推論の道を開く可能性がある。
関連論文リスト
- EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
大規模言語モデル(LLM)は、不確実性の下で最適な意思決定を必要とするシナリオにおいて、未調査のままである。
多くのアプリケーションに関係のあるステートレス強化学習環境である,帯域幅を最適に決定できる LLM の (in) 能力の測定を行う。
最適な探索アルゴリズムの存在を動機として,このアルゴリズム知識をLLMに統合する効率的な方法を提案する。
論文 参考訳(メタデータ) (2024-10-08T17:54:03Z) - Tender: Accelerating Large Language Models via Tensor Decomposition and Runtime Requantization [0.6445087473595953]
大規模言語モデル(LLM)は、機械学習における様々なタスクにおいて優れたパフォーマンスを示す。
LLM推論のデプロイは、高い計算とメモリ要求のために問題となる。
我々は,低精度でLLM推論を効率的に展開できるアルゴリズム-ハードウェア共設計ソリューションであるテンダーを提案する。
論文 参考訳(メタデータ) (2024-06-16T09:51:55Z) - Adaptive Layer Splitting for Wireless LLM Inference in Edge Computing: A Model-Based Reinforcement Learning Approach [18.153641696306707]
本研究では、モデルベース強化学習(MBRL)からインスピレーションを得て、エッジとユーザ機器(UE)間の最適分割点を決定するフレームワークを提案する。
報酬代理モデルを導入することで、頻繁な性能評価の計算コストを大幅に削減できる。
論文 参考訳(メタデータ) (2024-06-03T09:41:42Z) - Attention is Naturally Sparse with Gaussian Distributed Input [8.602260591839318]
本研究では,Large Language Models (LLMs) における注意点の空間性に関する厳密な理論的解析を行った。
我々の主な貢献は、空間が注意機構にどのように現れるかに関する詳細な理論的考察を提供することであり、計算貯蓄とモデルの有効性の間の潜在的なトレードオフに関する洞察を提供する。
論文 参考訳(メタデータ) (2024-04-03T12:37:34Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - Amortizing intractable inference in large language models [56.92471123778389]
難治性後部分布のサンプルとして, 償却ベイズ推定を用いる。
我々は,LLMファインチューニングの分散マッチングパラダイムが,最大習熟の代替となることを実証的に実証した。
重要な応用として、チェーン・オブ・ソート推論を潜在変数モデリング問題として解釈する。
論文 参考訳(メタデータ) (2023-10-06T16:36:08Z) - On Multi-objective Policy Optimization as a Tool for Reinforcement
Learning: Case Studies in Offline RL and Finetuning [24.264618706734012]
より効率的な深層強化学習アルゴリズムの開発方法について述べる。
ケーススタディとして,オフラインRLとファインタニングに注目した。
専門家の混合蒸留(DiME)について紹介する
オフラインのRLでは、DMEが最先端のアルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2021-06-15T14:59:14Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
モバイルエッジコンピューティング(MEC)は、AIアプリケーションに自然なプラットフォームを提供します。
再構成可能なインテリジェントサーフェス(RIS)の助けを借りて、MECで機械学習タスクを実行するインフラストラクチャを提示します。
具体的には,モバイルユーザの送信パワー,基地局のビームフォーミングベクトル,risの位相シフト行列を共同で最適化することにより,参加ユーザの学習誤差を最小化する。
論文 参考訳(メタデータ) (2020-12-25T07:08:50Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
インテリジェントサーフェス(IRS)は、個々の散乱素子の位相シフトを制御して無線チャネルを再形成するために用いられる。
散乱素子の規模が大きいため、受動ビームフォーミングは一般に高い計算複雑性によって挑戦される。
本稿では、IRS支援無線ネットワークの性能向上のための機械学習(ML)アプローチに焦点を当てる。
論文 参考訳(メタデータ) (2020-08-29T08:39:43Z) - A Dynamical Systems Approach for Convergence of the Bayesian EM
Algorithm [59.99439951055238]
我々は、(離散時間)リアプノフ安定性理論が、必ずしも勾配ベースではない最適化アルゴリズムの分析(および潜在的な設計)において、いかに強力なツールとして役立つかを示す。
本稿では,不完全データベイズフレームワークにおけるパラメータ推定を,MAP-EM (maximum a reari expectation-maximization) と呼ばれる一般的な最適化アルゴリズムを用いて行うことに着目したML問題について述べる。
高速収束(線形あるいは二次的)が達成され,S&Cアプローチを使わずに発表することが困難であった可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-23T01:34:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。