論文の概要: Attention is Naturally Sparse with Gaussian Distributed Input
- arxiv url: http://arxiv.org/abs/2404.02690v1
- Date: Wed, 3 Apr 2024 12:37:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 17:31:03.060969
- Title: Attention is Naturally Sparse with Gaussian Distributed Input
- Title(参考訳): ガウス分布入力による注意は自然に疎い
- Authors: Yichuan Deng, Zhao Song, Chiwun Yang,
- Abstract要約: 本研究では,Large Language Models (LLMs) における注意点の空間性に関する厳密な理論的解析を行った。
我々の主な貢献は、空間が注意機構にどのように現れるかに関する詳細な理論的考察を提供することであり、計算貯蓄とモデルの有効性の間の潜在的なトレードオフに関する洞察を提供する。
- 参考スコア(独自算出の注目度): 8.602260591839318
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The computational intensity of Large Language Models (LLMs) is a critical bottleneck, primarily due to the $O(n^2)$ complexity of the attention mechanism in transformer architectures. Addressing this, sparse attention emerges as a key innovation, aiming to reduce computational load while maintaining model performance. This study presents a rigorous theoretical analysis of the sparsity in attention scores within LLMs, particularly under the framework of Gaussian inputs. By establishing a set of foundational assumptions and employing a methodical theoretical approach, we unravel the intrinsic characteristics of attention score sparsity and its implications on computational efficiency. Our main contribution lies in providing a detailed theoretical examination of how sparsity manifests in attention mechanisms, offering insights into the potential trade-offs between computational savings and model effectiveness. This work not only advances our understanding of sparse attention but also provides a scaffold for future research in optimizing the computational frameworks of LLMs, paving the way for more scalable and efficient AI systems.
- Abstract(参考訳): 大規模言語モデル(LLM)の計算強度は、主にトランスフォーマーアーキテクチャにおける注意機構の複雑さのため、重要なボトルネックとなっている。
これに対応するために、モデル性能を維持しながら計算負荷を削減することを目的として、スパースアテンションが重要なイノベーションとして浮かび上がっている。
本研究では,特にガウス入力の枠組みの下で,LLMにおける注意点の空間性に関する厳密な理論的解析を行った。
基本的な仮定の集合を確立し,方法論的理論的アプローチを用いることで,注目スコアの空間性の本質的特性と,その計算効率への影響を明らかにする。
我々の主な貢献は、空間が注意機構にどのように現れるかに関する詳細な理論的考察を提供することであり、計算貯蓄とモデルの有効性の間の潜在的なトレードオフに関する洞察を提供する。
この作業は、スパースアテンションの理解を深めるだけでなく、LLMの計算フレームワークを最適化し、よりスケーラブルで効率的なAIシステムを実現するための足場も提供します。
関連論文リスト
- LevAttention: Time, Space, and Streaming Efficient Algorithm for Heavy Attentions [54.54897832889028]
任意の$K$に対して、$n$とは独立に「普遍集合」$Uサブセット[n]$が存在し、任意の$Q$と任意の行$i$に対して、大きな注目スコアが$A_i,j$ in row $i$ of $A$は全て$jin U$を持つことを示す。
我々は、視覚変換器のスキームの利点を実証的に示し、トレーニング中に我々の普遍的なセットを使用する新しいモデルのトレーニング方法を示した。
論文 参考訳(メタデータ) (2024-10-07T19:47:13Z) - Optimal Sketching for Residual Error Estimation for Matrix and Vector Norms [50.15964512954274]
線形スケッチを用いた行列とベクトルノルムの残差誤差推定問題について検討する。
これは、前作とほぼ同じスケッチサイズと精度で、経験的にかなり有利であることを示す。
また、スパースリカバリ問題に対して$Omega(k2/pn1-2/p)$低いバウンダリを示し、これは$mathrmpoly(log n)$ factorまで厳密である。
論文 参考訳(メタデータ) (2024-08-16T02:33:07Z) - Conv-Basis: A New Paradigm for Efficient Attention Inference and Gradient Computation in Transformers [16.046186753149]
最近のLarge Language Models(LLM)におけるトランスフォーマーの成功の鍵は自己認識メカニズムである
我々は、注目行列の畳み込み様構造を利用して、畳み込み行列を用いた注目の効率的な近似法を開発する。
トランスフォーマーモデルにおけるアテンション計算を加速するための新しいパラダイムが、より長いコンテキストへのアプリケーションを支援することを願っています。
論文 参考訳(メタデータ) (2024-05-08T17:11:38Z) - One Pass Streaming Algorithm for Super Long Token Attention
Approximation in Sublinear Space [11.735802740426294]
注意計算は、$O(n2)$の時間複雑性と$O(n2)$の空間複雑性を同時に行う。
ストリーミング方式で1パスのデータのみを読み取る新しいアルゴリズムを導入する。
特に,本アルゴリズムは,超長期トークンを用いたメモリ効率の優れた性能を示す。
論文 参考訳(メタデータ) (2023-11-24T18:35:00Z) - How to Capture Higher-order Correlations? Generalizing Matrix Softmax
Attention to Kronecker Computation [12.853829771559916]
本稿では,三重相関を捉える注意の一般化について検討する。
この一般化は、変圧器では不可能であった三重結合の検出に関する問題を解くことができる。
構築, アルゴリズム, 下位境界が自然に高次テンソルや相関に一般化されることが示される。
論文 参考訳(メタデータ) (2023-10-06T07:42:39Z) - Randomized and Deterministic Attention Sparsification Algorithms for
Over-parameterized Feature Dimension [18.57735939471469]
我々は注意問題のスパシフィケーションを考慮する。
超大規模特徴量の場合、文の長さをほぼ線形に縮めることができる。
論文 参考訳(メタデータ) (2023-04-10T05:52:38Z) - Fast Attention Requires Bounded Entries [19.17278873525312]
内部製品注意計算はTransformer, GPT-1, BERT, GPT-2, GPT-3, ChatGPTなどの大規模言語モデルを訓練するための基本的なタスクである。
行列を暗黙的に$A$とすることで、より高速なアルゴリズムが可能かどうかを検討する。
このことは、入力行列がより小さいエントリを持つ場合、注意計算の方がはるかに効率的である、実際に観察された現象の理論的な説明を与える。
論文 参考訳(メタデータ) (2023-02-26T02:42:39Z) - Provably Efficient Reinforcement Learning via Surprise Bound [66.15308700413814]
本稿では,一般値関数近似を用いた効率の良い強化学習アルゴリズムを提案する。
本アルゴリズムは, 線形設定と疎高次元線形設定の両方に適用した場合に, 合理的な後悔境界を達成できる。
論文 参考訳(メタデータ) (2023-02-22T20:21:25Z) - Learning a Latent Simplex in Input-Sparsity Time [58.30321592603066]
我々は、$AinmathbbRdtimes n$へのアクセスを考えると、潜入$k$-vertex simplex $KsubsetmathbbRdtimes n$を学習する問題を考える。
実行時間における$k$への依存は、トップ$k$特異値の質量が$a$であるという自然な仮定から不要であることを示す。
論文 参考訳(メタデータ) (2021-05-17T16:40:48Z) - Streaming Complexity of SVMs [110.63976030971106]
本稿では,ストリーミングモデルにおけるバイアス正規化SVM問題を解く際の空間複雑性について検討する。
両方の問題に対して、$frac1lambdaepsilon$の次元に対して、$frac1lambdaepsilon$よりも空間的に小さいストリーミングアルゴリズムを得ることができることを示す。
論文 参考訳(メタデータ) (2020-07-07T17:10:00Z) - Taking a hint: How to leverage loss predictors in contextual bandits? [63.546913998407405]
我々は,損失予測の助けを借りて,文脈的包帯における学習を研究する。
最適な後悔は$mathcalO(minsqrtT, sqrtmathcalETfrac13)$である。
論文 参考訳(メタデータ) (2020-03-04T07:36:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。