Open World Object Detection: A Survey
- URL: http://arxiv.org/abs/2410.11301v1
- Date: Tue, 15 Oct 2024 05:46:00 GMT
- Title: Open World Object Detection: A Survey
- Authors: Yiming Li, Yi Wang, Wenqian Wang, Dan Lin, Bingbing Li, Kim-Hui Yap,
- Abstract summary: Open world object detection (OWOD) is an emerging area of research that adapts this principle to explore new knowledge.
This paper offers a thorough review of the OWOD domain, covering essential aspects, including problem definitions, benchmark datasets, source codes, evaluation metrics, and a comparative study of existing methods.
The paper concludes by addressing the limitations and challenges faced by current OWOD algorithms and proposes directions for future research.
- Score: 16.839310066730533
- License:
- Abstract: Exploring new knowledge is a fundamental human ability that can be mirrored in the development of deep neural networks, especially in the field of object detection. Open world object detection (OWOD) is an emerging area of research that adapts this principle to explore new knowledge. It focuses on recognizing and learning from objects absent from initial training sets, thereby incrementally expanding its knowledge base when new class labels are introduced. This survey paper offers a thorough review of the OWOD domain, covering essential aspects, including problem definitions, benchmark datasets, source codes, evaluation metrics, and a comparative study of existing methods. Additionally, we investigate related areas like open set recognition (OSR) and incremental learning (IL), underlining their relevance to OWOD. Finally, the paper concludes by addressing the limitations and challenges faced by current OWOD algorithms and proposes directions for future research. To our knowledge, this is the first comprehensive survey of the emerging OWOD field with over one hundred references, marking a significant step forward for object detection technology. A comprehensive source code and benchmarks are archived and concluded at https://github.com/ArminLee/OWOD Review.
Related papers
- Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
Underwater object detection (UOD) aims to identify and localise objects in underwater images or videos.
In recent years, artificial intelligence (AI) based methods, especially deep learning methods, have shown promising performance in UOD.
arXiv Detail & Related papers (2024-10-08T00:25:33Z) - Few-Shot Object Detection: Research Advances and Challenges [15.916463121997843]
Few-shot object detection (FSOD) combines few-shot learning and object detection techniques to rapidly adapt to novel objects with limited annotated samples.
This paper presents a comprehensive survey to review the significant advancements in the field of FSOD in recent years.
arXiv Detail & Related papers (2024-04-07T03:37:29Z) - Semi-supervised Open-World Object Detection [74.95267079505145]
We introduce a more realistic formulation, named semi-supervised open-world detection (SS-OWOD)
We demonstrate that the performance of the state-of-the-art OWOD detector dramatically deteriorates in the proposed SS-OWOD setting.
Our experiments on 4 datasets including MS COCO, PASCAL, Objects365 and DOTA demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-02-25T07:12:51Z) - Remote Sensing Object Detection Meets Deep Learning: A Meta-review of
Challenges and Advances [51.70835702029498]
This review aims to present a comprehensive review of the recent achievements in deep learning based RSOD methods.
We identify five main challenges in RSOD, including multi-scale object detection, rotated object detection, weak object detection, tiny object detection, and object detection with limited supervision.
We also review the widely used benchmark datasets and evaluation metrics within the field of RSOD, as well as the application scenarios for RSOD.
arXiv Detail & Related papers (2023-09-13T06:48:32Z) - Semi-supervised Object Detection: A Survey on Recent Research and
Progress [2.2398477810999817]
Semi-supervised object detection (SSOD) has been paid more and more attentions due to its high research value and practicability.
We present a comprehensive and up-to-date survey on the SSOD approaches from five aspects.
arXiv Detail & Related papers (2023-06-25T02:54:03Z) - Addressing the Challenges of Open-World Object Detection [12.053132866404972]
OW-RCNN is an open world object detector that addresses the three main challenges of open world object detection (OWOD)
OW-RCNN establishes a new state of the art using the open-world evaluation protocol on MS-COCO.
arXiv Detail & Related papers (2023-03-27T06:11:28Z) - Detecting the open-world objects with the help of the Brain [20.00772846521719]
Open World Object Detection (OWOD) is a novel computer vision task with a considerable challenge.
OWOD algorithms are expected to detect unseen/unknown objects and incrementally learn them.
We propose leveraging the VL as the Brain'' of the open-world detector by simply generating unknown labels.
arXiv Detail & Related papers (2023-03-21T06:44:02Z) - Oriented Object Detection in Optical Remote Sensing Images using Deep Learning: A Survey [10.665235711722076]
Oriented object detection is one of the most fundamental and challenging tasks in remote sensing.
Recent years have witnessed remarkable progress in oriented object detection using deep learning techniques.
arXiv Detail & Related papers (2023-02-21T06:31:53Z) - OW-DETR: Open-world Detection Transformer [90.56239673123804]
We introduce a novel end-to-end transformer-based framework, OW-DETR, for open-world object detection.
OW-DETR comprises three dedicated components namely, attention-driven pseudo-labeling, novelty classification and objectness scoring.
Our model outperforms the recently introduced OWOD approach, ORE, with absolute gains ranging from 1.8% to 3.3% in terms of unknown recall.
arXiv Detail & Related papers (2021-12-02T18:58:30Z) - Learning Open-World Object Proposals without Learning to Classify [110.30191531975804]
We propose a classification-free Object Localization Network (OLN) which estimates the objectness of each region purely by how well the location and shape of a region overlaps with any ground-truth object.
This simple strategy learns generalizable objectness and outperforms existing proposals on cross-category generalization.
arXiv Detail & Related papers (2021-08-15T14:36:02Z) - Towards Open World Object Detection [68.79678648726416]
ORE: Open World Object Detector is based on contrastive clustering and energy based unknown identification.
We find that identifying and characterizing unknown instances helps to reduce confusion in an incremental object detection setting.
arXiv Detail & Related papers (2021-03-03T18:58:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.