SEER: Self-Aligned Evidence Extraction for Retrieval-Augmented Generation
- URL: http://arxiv.org/abs/2410.11315v1
- Date: Tue, 15 Oct 2024 06:26:24 GMT
- Title: SEER: Self-Aligned Evidence Extraction for Retrieval-Augmented Generation
- Authors: Xinping Zhao, Dongfang Li, Yan Zhong, Boren Hu, Yibin Chen, Baotian Hu, Min Zhang,
- Abstract summary: We propose a model-based evidence extraction learning framework, SEER, to optimize a vanilla model as an evidence extractor.
Our method largely improves the final RAG performance, enhances the faithfulness, helpfulness, and conciseness of the extracted evidence, and reduces the evidence length by 9.25 times.
- Score: 21.823931225182115
- License:
- Abstract: Recent studies in Retrieval-Augmented Generation (RAG) have investigated extracting evidence from retrieved passages to reduce computational costs and enhance the final RAG performance, yet it remains challenging. Existing methods heavily rely on heuristic-based augmentation, encountering several issues: (1) Poor generalization due to hand-crafted context filtering; (2) Semantics deficiency due to rule-based context chunking; (3) Skewed length due to sentence-wise filter learning. To address these issues, we propose a model-based evidence extraction learning framework, SEER, optimizing a vanilla model as an evidence extractor with desired properties through self-aligned learning. Extensive experiments show that our method largely improves the final RAG performance, enhances the faithfulness, helpfulness, and conciseness of the extracted evidence, and reduces the evidence length by 9.25 times. The code will be available at https://github.com/HITsz-TMG/SEER.
Related papers
- Graph of Records: Boosting Retrieval Augmented Generation for Long-context Summarization with Graphs [12.878608250420832]
We propose textitgraph of records (textbfGoR) to enhance RAG for long-context global summarization.
Inspired by the textitretrieve-then-generate paradigm of RAG, we construct a graph by establishing an edge between the retrieved text chunks and the corresponding LLM-generated response.
To further uncover the intricate correlations between them, GoR features a textitgraph neural network and an elaborately designed textitBERTScore-based objective for self-supervised model training.
arXiv Detail & Related papers (2024-10-14T18:34:29Z) - Long-Context LLMs Meet RAG: Overcoming Challenges for Long Inputs in RAG [36.754491649652664]
Retrieval-augmented generation (RAG) empowers large language models (LLMs) to utilize external knowledge sources.
This paper investigates the detrimental impact of retrieved "hard negatives" as a key contributor.
To mitigate this and enhance the robustness of long-context LLM-based RAG, we propose both training-free and training-based approaches.
arXiv Detail & Related papers (2024-10-08T12:30:07Z) - Speculative RAG: Enhancing Retrieval Augmented Generation through Drafting [68.90949377014742]
Speculative RAG is a framework that leverages a larger generalist LM to efficiently verify multiple RAG drafts produced in parallel by a smaller, distilled specialist LM.
Our method accelerates RAG by delegating drafting to the smaller specialist LM, with the larger generalist LM performing a single verification pass over the drafts.
It notably enhances accuracy by up to 12.97% while reducing latency by 51% compared to conventional RAG systems on PubHealth.
arXiv Detail & Related papers (2024-07-11T06:50:19Z) - RaFe: Ranking Feedback Improves Query Rewriting for RAG [83.24385658573198]
We propose a framework for training query rewriting models free of annotations.
By leveraging a publicly available reranker, oursprovides feedback aligned well with the rewriting objectives.
arXiv Detail & Related papers (2024-05-23T11:00:19Z) - RQ-RAG: Learning to Refine Queries for Retrieval Augmented Generation [42.82192656794179]
Large Language Models (LLMs) exhibit remarkable capabilities but are prone to generating inaccurate or hallucinatory responses.
This limitation stems from their reliance on vast pretraining datasets, making them susceptible to errors in unseen scenarios.
Retrieval-Augmented Generation (RAG) addresses this by incorporating external, relevant documents into the response generation process.
arXiv Detail & Related papers (2024-03-31T08:58:54Z) - Distillation Enhanced Generative Retrieval [96.69326099136289]
Generative retrieval is a promising new paradigm in text retrieval that generates identifier strings of relevant passages as the retrieval target.
In this work, we identify a viable direction to further enhance generative retrieval via distillation and propose a feasible framework, named DGR.
We conduct experiments on four public datasets, and the results indicate that DGR achieves state-of-the-art performance among the generative retrieval methods.
arXiv Detail & Related papers (2024-02-16T15:48:24Z) - Corrective Retrieval Augmented Generation [36.04062963574603]
Retrieval-augmented generation (RAG) relies heavily on relevance of retrieved documents, raising concerns about how the model behaves if retrieval goes wrong.
We propose the Corrective Retrieval Augmented Generation (CRAG) to improve the robustness of generation.
CRAG is plug-and-play and can be seamlessly coupled with various RAG-based approaches.
arXiv Detail & Related papers (2024-01-29T04:36:39Z) - Enriching Relation Extraction with OpenIE [70.52564277675056]
Relation extraction (RE) is a sub-discipline of information extraction (IE)
In this work, we explore how recent approaches for open information extraction (OpenIE) may help to improve the task of RE.
Our experiments over two annotated corpora, KnowledgeNet and FewRel, demonstrate the improved accuracy of our enriched models.
arXiv Detail & Related papers (2022-12-19T11:26:23Z) - Adaptive Fine-Grained Predicates Learning for Scene Graph Generation [122.4588401267544]
General Scene Graph Generation (SGG) models tend to predict head predicates and re-balancing strategies prefer tail categories.
We propose an Adaptive Fine-Grained Predicates Learning (FGPL-A) which aims at differentiating hard-to-distinguish predicates for SGG.
Our proposed model-agnostic strategy significantly boosts performance of benchmark models on VG-SGG and GQA-SGG datasets by up to 175% and 76% on Mean Recall@100, achieving new state-of-the-art performance.
arXiv Detail & Related papers (2022-07-11T03:37:57Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
We propose to explicitly teach the model to capture relevant contexts and entity types by supervising and augmenting intermediate steps (SAIS) for relation extraction.
Based on a broad spectrum of carefully designed tasks, our proposed SAIS method not only extracts relations of better quality due to more effective supervision, but also retrieves the corresponding supporting evidence more accurately.
arXiv Detail & Related papers (2021-09-24T17:37:35Z) - SPLADE v2: Sparse Lexical and Expansion Model for Information Retrieval [11.38022203865326]
SPLADE model provides highly sparse representations and competitive results with respect to state-of-the-art dense and sparse approaches.
We modify the pooling mechanism, benchmark a model solely based on document expansion, and introduce models trained with distillation.
Overall, SPLADE is considerably improved with more than $9$% gains on NDCG@10 on TREC DL 2019, leading to state-of-the-art results on the BEIR benchmark.
arXiv Detail & Related papers (2021-09-21T10:43:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.