R3-RAG: Learning Step-by-Step Reasoning and Retrieval for LLMs via Reinforcement Learning
- URL: http://arxiv.org/abs/2505.23794v1
- Date: Mon, 26 May 2025 12:25:37 GMT
- Title: R3-RAG: Learning Step-by-Step Reasoning and Retrieval for LLMs via Reinforcement Learning
- Authors: Yuan Li, Qi Luo, Xiaonan Li, Bufan Li, Qinyuan Cheng, Bo Wang, Yining Zheng, Yuxin Wang, Zhangyue Yin, Xipeng Qiu,
- Abstract summary: Retrieval-Augmented Generation (RAG) integrates external knowledge with Large Language Models (LLMs) to enhance factual correctness and hallucination.<n>We propose $textbfR3-RAG$, which uses $textbfR$einforcement learning to make the LLM learn how to $textbfR$eason and $textbfR$etrieve step by step, thus retrieving comprehensive external knowledge and leading to correct answers.
- Score: 62.742230250513025
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrieval-Augmented Generation (RAG) integrates external knowledge with Large Language Models (LLMs) to enhance factual correctness and mitigate hallucination. However, dense retrievers often become the bottleneck of RAG systems due to their limited parameters compared to LLMs and their inability to perform step-by-step reasoning. While prompt-based iterative RAG attempts to address these limitations, it is constrained by human-designed workflows. To address these limitations, we propose $\textbf{R3-RAG}$, which uses $\textbf{R}$einforcement learning to make the LLM learn how to $\textbf{R}$eason and $\textbf{R}$etrieve step by step, thus retrieving comprehensive external knowledge and leading to correct answers. R3-RAG is divided into two stages. We first use cold start to make the model learn the manner of iteratively interleaving reasoning and retrieval. Then we use reinforcement learning to further harness its ability to better explore the external retrieval environment. Specifically, we propose two rewards for R3-RAG: 1) answer correctness for outcome reward, which judges whether the trajectory leads to a correct answer; 2) relevance-based document verification for process reward, encouraging the model to retrieve documents that are relevant to the user question, through which we can let the model learn how to iteratively reason and retrieve relevant documents to get the correct answer. Experimental results show that R3-RAG significantly outperforms baselines and can transfer well to different retrievers. We release R3-RAG at https://github.com/Yuan-Li-FNLP/R3-RAG.
Related papers
- Beyond Chunks and Graphs: Retrieval-Augmented Generation through Triplet-Driven Thinking [31.73448933991891]
Retrieval-augmented generation (RAG) is critical for reducing hallucinations and incorporating external knowledge into Large Language Models (LLMs)<n>We propose T$2$RAG, a novel framework that operates on a simple, graph-free knowledge base of atomic triplets.<n> Empirical results show that T$2$RAG significantly outperforms state-of-the-art multi-round and Graph RAG methods.
arXiv Detail & Related papers (2025-08-04T13:50:44Z) - From Sufficiency to Reflection: Reinforcement-Guided Thinking Quality in Retrieval-Augmented Reasoning for LLMs [13.410543801811992]
This paper analyzes existing RAG reasoning models and identifies three main failure patterns.<n>We propose TIRESRAG-R1, a novel framework using a think-retrieve-reflect process and a multi-dimensional reward system.<n>Experiments on four multi-hop QA datasets show that TIRESRAG-R1 outperforms prior RAG methods and generalizes well to single-hop tasks.
arXiv Detail & Related papers (2025-07-30T14:29:44Z) - LTRR: Learning To Rank Retrievers for LLMs [53.285436927963865]
We show that routing-based RAG systems can outperform the best single-retriever-based systems.<n>Performance gains are especially pronounced in models trained with the Answer Correctness (AC) metric.<n>As part of the SIGIR 2025 LiveRAG challenge, our submitted system demonstrated the practical viability of our approach.
arXiv Detail & Related papers (2025-06-16T17:53:18Z) - Learning to Reason without External Rewards [100.27210579418562]
Training large language models (LLMs) for complex reasoning via Reinforcement Learning with Verifiable Rewards (RLVR) is effective but limited by reliance on costly, domain-specific supervision.<n>We explore Reinforcement Learning from Internal Feedback (RLIF), a framework that enables LLMs to learn from intrinsic signals without external rewards or labeled data.<n>We propose Intuitor, an RLIF method that uses a model's own confidence, termed self-certainty, as its sole reward signal.
arXiv Detail & Related papers (2025-05-26T07:01:06Z) - Reinforced Latent Reasoning for LLM-based Recommendation [83.18146814163308]
Large Language Models (LLMs) have demonstrated impressive reasoning capabilities in complex problem-solving tasks.<n>Existing methods typically rely on fine-tuning with explicit chain-of-thought (CoT) data.<n>In this work, we explore an alternative approach that shifts from explicit CoT reasoning to compact, information-dense latent reasoning.
arXiv Detail & Related papers (2025-05-25T11:03:45Z) - Effective and Transparent RAG: Adaptive-Reward Reinforcement Learning for Decision Traceability [16.87554947089102]
We propose ARENA, a transparent RAG generator framework trained via reinforcement learning (RL) with our proposed rewards.<n>Based on the structured generation and adaptive reward calculation, our RL-based training enables the model to identify key evidence, perform structured reasoning, and generate answers with interpretable decision traces.
arXiv Detail & Related papers (2025-05-19T15:40:29Z) - Search-R1: Training LLMs to Reason and Leverage Search Engines with Reinforcement Learning [50.419872452397684]
Search-R1 is an extension of reinforcement learning for reasoning frameworks.<n>It generates search queries during step-by-step reasoning with real-time retrieval.<n>It improves performance by 41% (Qwen2.5-7B) and 20% (Qwen2.5-3B) over various RAG baselines.
arXiv Detail & Related papers (2025-03-12T16:26:39Z) - LaRA: Benchmarking Retrieval-Augmented Generation and Long-Context LLMs -- No Silver Bullet for LC or RAG Routing [70.35888047551643]
We present LaRA, a novel benchmark specifically designed to rigorously compare RAG and LC LLMs.<n>LaRA encompasses 2326 test cases across four practical QA task categories and three types of naturally occurring long texts.<n>We find that the optimal choice between RAG and LC depends on a complex interplay of factors, including the model's parameter size, long-text capabilities, context length, task type, and the characteristics of the retrieved chunks.
arXiv Detail & Related papers (2025-02-14T08:04:22Z) - Invar-RAG: Invariant LLM-aligned Retrieval for Better Generation [43.630437906898635]
We propose a novel two-stage fine-tuning architecture called Invar-RAG.
In the retrieval stage, an LLM-based retriever is constructed by integrating LoRA-based representation learning.
In the generation stage, a refined fine-tuning method is employed to improve LLM accuracy in generating answers based on retrieved information.
arXiv Detail & Related papers (2024-11-11T14:25:37Z) - Grounding by Trying: LLMs with Reinforcement Learning-Enhanced Retrieval [55.63711219190506]
Large language models (LLMs) often struggle with posing the right search queries.
We introduce $underlineLe$arning to $underlineRe$trieve by $underlineT$rying (LeReT)
LeReT can improve the absolute retrieval accuracy by up to 29% and the downstream generator evaluations by 17%.
arXiv Detail & Related papers (2024-10-30T17:02:54Z) - W-RAG: Weakly Supervised Dense Retrieval in RAG for Open-domain Question Answering [28.79851078451609]
We propose W-RAG, a method that draws weak training signals from the downstream task and fine-tunes the retriever to prioritize passages that most benefit the task.<n>We conduct comprehensive experiments across four publicly available OpenQA datasets to demonstrate that our approach enhances both retrieval and OpenQA performance.
arXiv Detail & Related papers (2024-08-15T22:34:44Z) - R^2AG: Incorporating Retrieval Information into Retrieval Augmented Generation [11.890598082534577]
Retrieval augmented generation (RAG) has been applied in many scenarios to augment large language models (LLMs) with external documents provided by retrievers.
This paper proposes R$2$AG, a novel enhanced RAG framework that incorporates Retrieval information into Retrieval Augmented Generation.
arXiv Detail & Related papers (2024-06-19T06:19:48Z) - RQ-RAG: Learning to Refine Queries for Retrieval Augmented Generation [42.82192656794179]
Large Language Models (LLMs) exhibit remarkable capabilities but are prone to generating inaccurate or hallucinatory responses.
This limitation stems from their reliance on vast pretraining datasets, making them susceptible to errors in unseen scenarios.
Retrieval-Augmented Generation (RAG) addresses this by incorporating external, relevant documents into the response generation process.
arXiv Detail & Related papers (2024-03-31T08:58:54Z) - Query Rewriting for Retrieval-Augmented Large Language Models [139.242907155883]
Large Language Models (LLMs) play powerful, black-box readers in the retrieve-then-read pipeline.
This work introduces a new framework, Rewrite-Retrieve-Read instead of the previous retrieve-then-read for the retrieval-augmented LLMs.
arXiv Detail & Related papers (2023-05-23T17:27:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.