論文の概要: Preserve or Modify? Context-Aware Evaluation for Balancing Preservation and Modification in Text-Guided Image Editing
- arxiv url: http://arxiv.org/abs/2410.11374v2
- Date: Wed, 04 Dec 2024 07:35:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-05 15:05:47.973246
- Title: Preserve or Modify? Context-Aware Evaluation for Balancing Preservation and Modification in Text-Guided Image Editing
- Title(参考訳): 保存か修正か? テキストガイド画像編集における保存と修正のバランスをとるためのコンテキストアウェア評価
- Authors: Yoonjeon Kim, Soohyun Ryu, Yeonsung Jung, Hyunkoo Lee, Joowon Kim, June Yong Yang, Jaeryong Hwang, Eunho Yang,
- Abstract要約: 保存・修正の側面を適応的に調整するtextbfcontext-aware メトリックである textttAugCLIP を提案する。
textttAugCLIPは、人間の評価基準と著しく整合し、既存のメトリクスよりも優れています。
- 参考スコア(独自算出の注目度): 26.086806549826058
- License:
- Abstract: The development of vision-language and generative models has significantly advanced text-guided image editing, which seeks the \textit{preservation} of core elements in the source image while implementing \textit{modifications} based on the target text. However, existing metrics have a \textbf{context-blindness} problem, indiscriminately applying the same evaluation criteria on completely different pairs of source image and target text, biasing towards either modification or preservation. Directional CLIP similarity, the only metric that considers both source image and target text, is also biased towards modification aspects and attends to irrelevant editing regions of the image. We propose \texttt{AugCLIP}, a \textbf{context-aware} metric that adaptively coordinates preservation and modification aspects, depending on the specific context of a given source image and target text. This is done by deriving the CLIP representation of an ideally edited image, that preserves the source image with necessary modifications to align with target text. More specifically, using a multi-modal large language model, \texttt{AugCLIP} augments the textual descriptions of the source and target, then calculates a modification vector through a hyperplane that separates source and target attributes in CLIP space. Extensive experiments on five benchmark datasets, encompassing a diverse range of editing scenarios, show that \texttt{AugCLIP} aligns remarkably well with human evaluation standards, outperforming existing metrics. The code will be open-sourced for community use.
- Abstract(参考訳): 視覚言語および生成モデルの開発は、テキスト誘導画像編集を著しく進歩させ、ターゲットのテキストに基づいて「textit{modifications」を実装しながら、ソース画像の中核要素の「textit{servation}」を求める。
しかし、既存のメトリクスには、全く異なるソースイメージとターゲットテキストに対して同じ評価基準を無差別に適用し、修正または保存のどちらにも偏っている、という、‘textbf{context-blindness} 問題がある。
ソースイメージとターゲットテキストの両方を考慮する唯一の指標である Directional CLIP の類似性は、修正面にも偏りがあり、画像の無関係な編集領域に付随する。
本稿では,特定のソースイメージとターゲットテキストのコンテキストに応じて,保存面と修正面を適応的にコーディネートする <textbf{context-aware} メトリックである \texttt{AugCLIP} を提案する。
これは、理想的に編集されたイメージのCLIP表現を導出することで実現される。
具体的には、マルチモーダルな大言語モデルを使用して、ソースとターゲットのテキスト記述を拡大し、CLIP空間のソースとターゲット属性を分離するハイパープレーンを通じて修正ベクトルを計算する。
さまざまな編集シナリオを含む5つのベンチマークデータセットに関する大規模な実験は、 \texttt{AugCLIP}が人間の評価基準と極めてよく一致し、既存のメトリクスよりも優れていることを示している。
コードは、コミュニティ利用のためにオープンソース化される。
関連論文リスト
- TypeScore: A Text Fidelity Metric for Text-to-Image Generative Models [39.06617653124486]
我々はTypeScoreと呼ばれる新しい評価フレームワークを導入し、モデルが高忠実な埋め込みテキストで画像を生成する能力を評価する。
提案手法は、CLIPScoreよりも高解像度で、一般的な画像生成モデルを区別する。
論文 参考訳(メタデータ) (2024-11-02T07:56:54Z) - DM-Align: Leveraging the Power of Natural Language Instructions to Make Changes to Images [55.546024767130994]
本稿では,画像のどの部分を変更するか,保存するかを明確に推論することで,画像エディタのテキストベースの制御を強化する新しいモデルを提案する。
元のソースイメージの記述と必要な更新を反映する命令と入力イメージとの間の単語アライメントに依存する。
Bisonデータセットのサブセットと、Dreamと呼ばれる自己定義データセットで評価される。
論文 参考訳(メタデータ) (2024-04-27T22:45:47Z) - FINEMATCH: Aspect-based Fine-grained Image and Text Mismatch Detection and Correction [66.98008357232428]
我々は新しいアスペクトベースのきめ細かいテキストと画像マッチングベンチマークであるFineMatchを提案する。
FineMatchはテキストと画像のミスマッチの検出と修正に焦点を当てている。
FineMatchで訓練されたモデルは、きめ細かいテキストや画像のミスマッチを検出する能力の向上を示す。
論文 参考訳(メタデータ) (2024-04-23T03:42:14Z) - Language Guided Domain Generalized Medical Image Segmentation [68.93124785575739]
単一ソースドメインの一般化は、より信頼性が高く一貫性のあるイメージセグメンテーションを現実の臨床環境にわたって約束する。
本稿では,テキストエンコーダ機能によって案内されるコントラスト学習機構を組み込むことで,テキスト情報を明確に活用する手法を提案する。
文献における既存手法に対して,本手法は良好な性能を発揮する。
論文 参考訳(メタデータ) (2024-04-01T17:48:15Z) - E4C: Enhance Editability for Text-Based Image Editing by Harnessing Efficient CLIP Guidance [13.535394339438428]
拡散ベースの画像編集は、ソースイメージコンテンツを保存し、新しいコンテンツを生成したり、修正を加えたりする複合プロセスである。
テキストベースのtextbf 編集のための textbfCLIP 誘導によるゼロショット画像編集手法である textbfEnhance textbfEditability を提案する。
論文 参考訳(メタデータ) (2024-03-15T09:26:48Z) - InstructGIE: Towards Generalizable Image Editing [34.83188723673297]
一般化ロバスト性を高めた新しい画像編集フレームワークを提案する。
このフレームワークには、VMamba Blockを利用して、画像編集タスクに特別に最適化されたモジュールが組み込まれている。
また、生成された画像の劣化した詳細に対処し、修正するために特別に設計された、選択的な領域マッチング技術も披露する。
論文 参考訳(メタデータ) (2024-03-08T03:43:04Z) - Conditional Score Guidance for Text-Driven Image-to-Image Translation [52.73564644268749]
本稿では,事前訓練されたテキスト・画像拡散モデルに基づく,テキスト駆動型画像・画像変換のための新しいアルゴリズムを提案する。
本手法は,ソース画像の関心領域を選択的に編集することで,対象画像を生成することを目的とする。
論文 参考訳(メタデータ) (2023-05-29T10:48:34Z) - iEdit: Localised Text-guided Image Editing with Weak Supervision [53.082196061014734]
テキスト誘導画像編集のための新しい学習法を提案する。
ソースイメージに条件付けされた画像とテキスト編集プロンプトを生成する。
画像の忠実度、CLIPアライメントスコア、および生成された画像と実際の画像の両方を定性的に編集する点において、画像に対して好ましい結果を示す。
論文 参考訳(メタデータ) (2023-05-10T07:39:14Z) - Imagen Editor and EditBench: Advancing and Evaluating Text-Guided Image
Inpainting [53.708523312636096]
本稿では,テキスト誘導画像のインペイントを微調整し,カスケード拡散モデルであるImagen Editorを提案する。
編集はテキストプロンプトに忠実で、オブジェクト検出器を使用してトレーニング中に塗装マスクを提案する。
質的,定量的な評価を改善するために,テキスト誘導画像の塗り絵の体系的ベンチマークであるEditBenchを導入する。
論文 参考訳(メタデータ) (2022-12-13T21:25:11Z) - Is An Image Worth Five Sentences? A New Look into Semantics for
Image-Text Matching [10.992151305603267]
本稿では,検索項目の意味的関連度を評価するための2つの指標を提案する。
画像キャプションの指標であるCIDErを用いて,標準的な三重項損失に最適化されるセマンティック適応マージン(SAM)を定義する。
論文 参考訳(メタデータ) (2021-10-06T09:54:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。