論文の概要: FOOGD: Federated Collaboration for Both Out-of-distribution Generalization and Detection
- arxiv url: http://arxiv.org/abs/2410.11397v1
- Date: Tue, 15 Oct 2024 08:39:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 14:01:36.314490
- Title: FOOGD: Federated Collaboration for Both Out-of-distribution Generalization and Detection
- Title(参考訳): FOOGD: アウト・オブ・ディストリビューションの一般化と検出のための連携
- Authors: Xinting Liao, Weiming Liu, Pengyang Zhou, Fengyuan Yu, Jiahe Xu, Jun Wang, Wenjie Wang, Chaochao Chen, Xiaolin Zheng,
- Abstract要約: Federated Learning(FL)は、クライアントモデルと連携してグローバルな知識を捉える、有望な機械学習パラダイムである。
実世界のシナリオにFLモデルをデプロイすることは、分布内データと予期せぬ分布外データの共存のため、依然として信頼性が低い。
本稿では,各クライアントの確率密度を推定し,信頼性の高いグローバル分布を求めるFOOGDを提案する。
- 参考スコア(独自算出の注目度): 24.969694113366216
- License:
- Abstract: Federated learning (FL) is a promising machine learning paradigm that collaborates with client models to capture global knowledge. However, deploying FL models in real-world scenarios remains unreliable due to the coexistence of in-distribution data and unexpected out-of-distribution (OOD) data, such as covariate-shift and semantic-shift data. Current FL researches typically address either covariate-shift data through OOD generalization or semantic-shift data via OOD detection, overlooking the simultaneous occurrence of various OOD shifts. In this work, we propose FOOGD, a method that estimates the probability density of each client and obtains reliable global distribution as guidance for the subsequent FL process. Firstly, SM3D in FOOGD estimates score model for arbitrary distributions without prior constraints, and detects semantic-shift data powerfully. Then SAG in FOOGD provides invariant yet diverse knowledge for both local covariate-shift generalization and client performance generalization. In empirical validations, FOOGD significantly enjoys three main advantages: (1) reliably estimating non-normalized decentralized distributions, (2) detecting semantic shift data via score values, and (3) generalizing to covariate-shift data by regularizing feature extractor. The prejoct is open in https://github.com/XeniaLLL/FOOGD-main.git.
- Abstract(参考訳): Federated Learning(FL)は、クライアントモデルと連携してグローバルな知識を捉える、有望な機械学習パラダイムである。
しかし、実際のシナリオでFLモデルをデプロイすることは、共分散データと、共変量シフトやセマンティックシフトデータのような予期せぬアウト・オブ・ディストリビューション(OOD)データの共存のため、信頼性が低いままである。
現在のFL研究は、OOD一般化による共変量シフトデータまたはOOD検出による意味量シフトデータのいずれかに対処し、様々なOODシフトの同時発生を見越すのが一般的である。
本研究では,各クライアントの確率密度を推定し,その後のFLプロセスのガイダンスとして信頼性の高いグローバル分布を求めるFOOGDを提案する。
まず、FOOGDにおけるSM3Dは、事前制約なしで任意の分布のスコアモデルを推定し、セマンティックシフトデータを強力に検出する。
次に FOOGD の SAG は局所共変量シフト一般化とクライアント性能一般化の双方に対して不変かつ多様な知識を提供する。
FOOGDは,(1)非正規化分散分布の確実な推定,(2)スコア値による意味的シフトデータの検出,(3)特徴抽出器の正規化による共変量シフトデータへの一般化,という3つの大きな利点を享受する。
述語はhttps://github.com/XeniaLLL/FOOGD-main.gitで公開されている。
関連論文リスト
- Prediction Accuracy & Reliability: Classification and Object Localization under Distribution Shift [1.433758865948252]
本研究では,自然分布変化と気象増悪が検出品質および信頼性評価に与える影響について検討した。
公開されている自動運転データセットから、新しいデータセットがキュレートされた。
分散シフト中のCNNの粒度解析により、タスク性能と信頼性推定の両方に異なるタイプのシフトの影響を定量化することができる。
論文 参考訳(メタデータ) (2024-09-05T14:06:56Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
私たちはaを提案します。
フェデレートされた異常検出フレームワークであるPeFADは、プライバシーの懸念が高まっている。
我々は、4つの実際のデータセットに対して広範な評価を行い、PeFADは既存の最先端ベースラインを最大28.74%上回っている。
論文 参考訳(メタデータ) (2024-06-04T13:51:08Z) - FedUV: Uniformity and Variance for Heterogeneous Federated Learning [5.9330433627374815]
フェデレーション学習は、広く分散されたデータでニューラルネットワークをトレーニングするための有望なフレームワークである。
最近の研究によると、ネットワークの最終層が局所バイアスの傾向が最も大きいためである。
凍結重量が一定の特異値をもたらすという観測によって動機付けられた重みにSVDを適用して分類器の訓練力学を考察する。
論文 参考訳(メタデータ) (2024-02-27T15:53:15Z) - Fake It Till Make It: Federated Learning with Consensus-Oriented
Generation [52.82176415223988]
コンセンサス指向生成による連合学習(FedCOG)を提案する。
FedCOGは、補完的なデータ生成と知識蒸留に基づくモデルトレーニングという、クライアント側の2つの重要なコンポーネントで構成されています。
古典的および実世界のFLデータセットの実験は、FedCOGが一貫して最先端の手法より優れていることを示している。
論文 参考訳(メタデータ) (2023-12-10T18:49:59Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
本稿では,ガウス混合モデル(GMM)を用いたPFL(Personalized Federated Learning)を提案する。
FedGMMはオーバーヘッドを最小限に抑え、新しいクライアントに適応する付加的なアドバンテージを持ち、不確実な定量化を可能にします。
PFL分類と新しいサンプル検出の両方において, 合成データセットとベンチマークデータセットの実証評価により, 提案手法の優れた性能を示した。
論文 参考訳(メタデータ) (2023-05-01T20:04:46Z) - FedFA: Federated Feature Augmentation [25.130087374092383]
フェデレーション学習は、複数のパーティが生データを交換することなく、ディープモデルを協調的にトレーニングすることを可能にする。
本研究の主な目的は,クライアントのサンプルの特徴変化に対処する堅牢なフェデレーション学習アルゴリズムを開発することである。
我々は,フェデレーション機能強化の観点から,フェデレーション学習に取り組むためのFedFAを提案する。
論文 参考訳(メタデータ) (2023-01-30T15:39:55Z) - Beyond ADMM: A Unified Client-variance-reduced Adaptive Federated
Learning Framework [82.36466358313025]
我々はFedVRAと呼ばれる原始二重FLアルゴリズムを提案し、このアルゴリズムはグローバルモデルの分散還元レベルとバイアスを適応的に制御することができる。
半教師付き画像分類タスクに基づく実験は,既存の手法よりもFedVRAの方が優れていることを示す。
論文 参考訳(メタデータ) (2022-12-03T03:27:51Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) は、それぞれの制限を回避しつつ、両方の世界の善良な端を接続することを目的としている。
DaCは、ターゲットデータをソースライクなサンプルとターゲット固有なサンプルに分割する。
さらに、ソースライクなドメインと、メモリバンクベースの最大平均離散性(MMD)損失を用いて、ターゲット固有のサンプルとを整合させて、分散ミスマッチを低減する。
論文 参考訳(メタデータ) (2022-11-12T09:21:49Z) - FedGen: Generalizable Federated Learning for Sequential Data [8.784435748969806]
多くの実世界の分散環境では、バイアスとデータサンプリングの問題により、急激な相関が存在する。
我々はFedGenという汎用的なフェデレーション学習フレームワークを提案し、クライアントが素早い特徴と不変な特徴を識別および識別できるようにする。
FedGenは、より優れた一般化を実現し、現在のフェデレーション学習手法の精度を24%以上上回るモデルが得られることを示す。
論文 参考訳(メタデータ) (2022-11-03T15:48:14Z) - Gradient Masked Averaging for Federated Learning [24.687254139644736]
フェデレートラーニングは、統一グローバルモデルの学習を協調するために、異種データを持つ多数のクライアントを可能にする。
標準FLアルゴリズムは、サーバのグローバルモデルを近似するために、モデルパラメータや勾配の更新を平均化する。
本稿では,クライアント更新の標準平均化の代替として,FLの勾配マスク平均化手法を提案する。
論文 参考訳(メタデータ) (2022-01-28T08:42:43Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。