Simulation of satellite and optical link dynamics in a quantum repeater constellation
- URL: http://arxiv.org/abs/2410.11422v1
- Date: Tue, 15 Oct 2024 09:17:36 GMT
- Title: Simulation of satellite and optical link dynamics in a quantum repeater constellation
- Authors: Jaspar Meister, Philipp Kleinpaß, Davide Orsucci,
- Abstract summary: Quantum repeaters and satellite-based optical links are complementary technological approaches to overcome the exponential photon loss in optical fibers.
We numerically solve the equations of motion of the dynamic system consisting of three satellites in low Earth orbit.
We derive analytical expressions for the Bell state measurement and associated error rates for quantum memory assisted communications.
- Score: 0.0
- License:
- Abstract: Quantum repeaters and satellite-based optical links are complementary technological approaches to overcome the exponential photon loss in optical fibers and thus allow quantum communication on a global scale. We analyze architectures which combine these approaches and use satellites as quantum repeater nodes to distribute entanglement to distant optical ground stations. Here we simulate dynamic, three-dimensional ground station passes, going beyond previous studies that typically consider static satellite links. For this, we numerically solve the equations of motion of the dynamic system consisting of three satellites in low Earth orbit. The model of the optical link takes into account atmospheric attenuation, single-mode fiber coupling, beam wandering and broadening, as well as adaptive optics effects. We derive analytical expressions for the Bell state measurement and associated error rates for quantum memory assisted communications, including retrieval efficiency and state coherence. We consider downlink and uplink architectures for continental and intercontinental connections and evaluate the impact of satellite altitude and inter-satellite distance on the expected entanglement swapping rate. Our simulation model enables us to design different orbital configurations for the satellite constellation and analyze the annual performance of the quantum repeater under realistic conditions.
Related papers
- Quantum Entanglement Distribution via Uplink Satellite Channels [41.94295877935867]
Quantum satellites generate entangled pairs in space and distribute them to ground stations separated some distance away.
reverse uplink case, where pairs are generated on the ground and swapped on the satellite using an optical Bell-measurement, has not been seriously considered.
arXiv Detail & Related papers (2024-09-30T06:25:56Z) - Quantum Annealing-Based Algorithm for Efficient Coalition Formation Among LEO Satellites [4.737806718785056]
As the number of satellites increases, the number of communication links to maintain also rises.
This paper formulates the clustering of LEO satellites as a coalition structure generation (CSG) problem.
We obtain the optimal partitions using a hybrid quantum-classical algorithm called GCS-Q.
Our experiments, conducted using the D-Wave Advantage annealer and the state-of-the-art solver Gurobi, demonstrate that the quantum annealer significantly outperforms classical methods in terms of runtime.
arXiv Detail & Related papers (2024-08-12T08:53:46Z) - Entanglement Swapping in Orbit: a Satellite Quantum Link Case Study [0.3958317527488534]
We study the performance of a quantum link between two ground stations using a quantum-memory-equipped satellite as a quantum repeater.
The number of available quantum memory slots m, together with the unavoidable round-trip communication latency t of at least a few milliseconds, severely reduces the effective average repetition rate to m/t.
arXiv Detail & Related papers (2024-05-13T09:52:50Z) - Collaborative Ground-Space Communications via Evolutionary Multi-objective Deep Reinforcement Learning [113.48727062141764]
We propose a distributed collaborative beamforming (DCB)-based uplink communication paradigm for enabling ground-space direct communications.
DCB treats the terminals that are unable to establish efficient direct connections with the low Earth orbit (LEO) satellites as distributed antennas.
We propose an evolutionary multi-objective deep reinforcement learning algorithm to obtain the desirable policies.
arXiv Detail & Related papers (2024-04-11T03:13:02Z) - Satellite Federated Edge Learning: Architecture Design and Convergence Analysis [47.057886812985984]
This paper introduces a novel FEEL algorithm, named FEDMEGA, tailored to mega-constellation networks.
By integrating inter-satellite links (ISL) for intra-orbit model aggregation, the proposed algorithm significantly reduces the usage of low data rate and intermittent GSL.
Our proposed method includes a ring all-reduce based intra-orbit aggregation mechanism, coupled with a network flow-based transmission scheme for global model aggregation.
arXiv Detail & Related papers (2024-04-02T11:59:58Z) - A CubeSat platform for space based quantum key distribution [62.997667081978825]
We report on the follow-up mission of SpooQy-1, a 3U CubeSat that successfully demonstrated the generation of polarization-entangled photons in orbit.
The next iteration of the mission will showcase satellite-to-ground quantum key distribution based on a compact source of polarization-entangled photon-pairs.
We briefly describe the design of the optical ground station that we are currently building in Singapore for receiving the quantum signal.
arXiv Detail & Related papers (2022-04-23T06:28:43Z) - Storage and analysis of light-matter entanglement in a fibre-integrated
system [48.7576911714538]
We demonstrate a fiber-integrated quantum memory entangled with a photon at telecommunication wavelength.
The storage device is based on a fiber-pigtailed laser written waveguide in a rare-earth doped solid and allows an all-fiber stable adressing of the memory.
Our results feature orders of magnitude advances in terms of storage time and efficiency for integrated storage of light-matter entanglement, and constitute a significant step forward towards quantum networks using integrated devices.
arXiv Detail & Related papers (2022-01-10T14:28:04Z) - Analysis of satellite-to-ground quantum key distribution with adaptive
optics [0.0]
Future quantum communication infrastructures will rely on both terrestrial and space-based links.
We study the role of adaptive optics (AO) in this optimization.
arXiv Detail & Related papers (2021-11-12T14:47:23Z) - Realizing quantum nodes in space for cost-effective, global quantum
communication: in-orbit results and next steps [94.08853042978113]
SpooQy-1 is a satellite developed at the Centre for Quantum Technologies.
It has successfully demonstrated the operation of an entangled photon pair source on a resource-constrained CubeSat platform.
arXiv Detail & Related papers (2021-04-22T02:59:23Z) - Rapid characterisation of linear-optical networks via PhaseLift [51.03305009278831]
Integrated photonics offers great phase-stability and can rely on the large scale manufacturability provided by the semiconductor industry.
New devices, based on such optical circuits, hold the promise of faster and energy-efficient computations in machine learning applications.
We present a novel technique to reconstruct the transfer matrix of linear optical networks.
arXiv Detail & Related papers (2020-10-01T16:04:22Z) - Quantum repeaters in space [0.0]
Long-distance entanglement is a very precious resource, but its distribution is difficult due to the exponential losses of light in optical fibres.
We propose to combine quantum repeaters and satellite-based links, into a scheme that allows to achieve entanglement distribution over global distances.
The integration of satellite-based links with ground repeater networks can be envisaged to represent the backbone of the future Quantum Internet.
arXiv Detail & Related papers (2020-05-20T15:43:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.