Satellite-assisted quantum communication with single photon sources and atomic memories
- URL: http://arxiv.org/abs/2411.09533v1
- Date: Thu, 14 Nov 2024 15:49:51 GMT
- Title: Satellite-assisted quantum communication with single photon sources and atomic memories
- Authors: V. Domínguez Tubío, M. Badás Aldecocea, J. van Dam, A. S. Sørensen, J. Borregaard,
- Abstract summary: Satellite-based quantum repeaters are a promising means to reach global distances in quantum networking.
We propose a satellite-based quantum repeater architecture with trapped individual atomic qubits.
- Score: 0.0
- License:
- Abstract: Satellite-based quantum repeaters are a promising means to reach global distances in quantum networking due to the polynomial decrease of optical transmission with distance in free space, in contrast to the exponential decrease in optical fibers. We propose a satellite-based quantum repeater architecture with trapped individual atomic qubits, which can serve both as quantum memories and true single photon sources. This hardware allows for nearly deterministic Bell measurements and exhibits long coherence times without the need for costly cryogenic technology in space. We develop a detailed analytical model of the repeater, which includes the main imperfections of the quantum hardware and the optical link, allowing us to estimate that high-rate and high-fidelity entanglement distribution can be achieved over inter-continental distances. In particular, we find that high fidelity entanglement distribution over thousands of kilometres at a rate of 100 Hz can be achieved with orders of magnitude fewer memory modes than conventional architectures based on optical Bell state measurements.
Related papers
- Hybrid Quantum Repeaters with Ensemble-based Quantum Memories and Single-spin Photon Transducers [13.607316611508045]
We propose to combine two promising hardware platforms in a hybrid quantum repeater architecture.
We describe how a single Rubidium (Rb) atom coupled to nanophotonic resonators can function as a high-rate, telecom-visible entangled photon source.
Our analysis shows that by employing up to 9 repeater stations, each equipped with two Tm-memories capable of holding up to 625 storage modes, along with four single Rb atoms, one can reach a quantum communication rate of about 10 secret bits per second across distances of up to 1000 km.
arXiv Detail & Related papers (2024-01-22T22:56:50Z) - Quantum Optical Memory for Entanglement Distribution [52.77024349608834]
Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing.
Over the past two decades, quantum optical memories with high fidelity, high efficiencies, long storage times, and promising multiplexing capabilities have been developed.
arXiv Detail & Related papers (2023-04-19T03:18:51Z) - Time-delayed single satellite quantum repeater node for global quantum
communications [0.0]
Quantum repeaters (QRs) have been proposed to overcome the inherent direct transmission range limit through optical fibre.
Recent proposals suggest that strings of space-borne QRs with on-board quantum memories (QMs) are able to provide global coverage.
Here, we propose an alternative to such repeater constellations using a single satellite with two QMs that effectively acts as a time-delayed version of a single QR node.
arXiv Detail & Related papers (2023-03-07T19:00:12Z) - QUICK$^3$ -- Design of a satellite-based quantum light source for
quantum communication and extended physical theory tests in space [73.86330563258117]
Single photon source can enhance secure data rates in satellite-based quantum key distribution scenarios.
payload is being integrated into a 3U CubeSat and scheduled for launch in 2024 into low Earth orbit.
arXiv Detail & Related papers (2023-01-26T15:34:11Z) - A Quantum Repeater Platform based on Single SiV$^-$ Centers in Diamond
with Cavity-Assisted, All-Optical Spin Access and Fast Coherent Driving [45.82374977939355]
Quantum key distribution enables secure communication based on the principles of quantum mechanics.
Quantum repeaters are required to establish large-scale quantum networks.
We present an efficient spin-photon interface for quantum repeaters.
arXiv Detail & Related papers (2022-10-28T14:33:24Z) - Storage and analysis of light-matter entanglement in a fibre-integrated
system [48.7576911714538]
We demonstrate a fiber-integrated quantum memory entangled with a photon at telecommunication wavelength.
The storage device is based on a fiber-pigtailed laser written waveguide in a rare-earth doped solid and allows an all-fiber stable adressing of the memory.
Our results feature orders of magnitude advances in terms of storage time and efficiency for integrated storage of light-matter entanglement, and constitute a significant step forward towards quantum networks using integrated devices.
arXiv Detail & Related papers (2022-01-10T14:28:04Z) - Realizing quantum nodes in space for cost-effective, global quantum
communication: in-orbit results and next steps [94.08853042978113]
SpooQy-1 is a satellite developed at the Centre for Quantum Technologies.
It has successfully demonstrated the operation of an entangled photon pair source on a resource-constrained CubeSat platform.
arXiv Detail & Related papers (2021-04-22T02:59:23Z) - Telecom-heralded entanglement between remote multimode solid-state
quantum memories [55.41644538483948]
Future quantum networks will enable the distribution of entanglement between distant locations and allow applications in quantum communication, quantum sensing and distributed quantum computation.
Here we report the demonstration of heralded entanglement between two spatially separated quantum nodes, where the entanglement is stored in multimode solid-state quantum memories.
We also show that the generated entanglement is robust against loss in the heralding path, and demonstrate temporally multiplexed operation, with 62 temporal modes.
arXiv Detail & Related papers (2021-01-13T14:31:54Z) - Space-borne quantum memories for global quantum communication [0.0]
We analyse the use of quantum memory (QM)-equipped satellites for quantum communication.
We demonstrate that satellites equipped with QMs provide three orders of magnitude faster entanglement distribution rates than existing protocols.
arXiv Detail & Related papers (2020-06-18T16:03:54Z) - Quantum repeaters in space [0.0]
Long-distance entanglement is a very precious resource, but its distribution is difficult due to the exponential losses of light in optical fibres.
We propose to combine quantum repeaters and satellite-based links, into a scheme that allows to achieve entanglement distribution over global distances.
The integration of satellite-based links with ground repeater networks can be envisaged to represent the backbone of the future Quantum Internet.
arXiv Detail & Related papers (2020-05-20T15:43:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.