InvSeg: Test-Time Prompt Inversion for Semantic Segmentation
- URL: http://arxiv.org/abs/2410.11473v1
- Date: Tue, 15 Oct 2024 10:20:31 GMT
- Title: InvSeg: Test-Time Prompt Inversion for Semantic Segmentation
- Authors: Jiayi Lin, Jiabo Huang, Jian Hu, Shaogang Gong,
- Abstract summary: InvSeg is a test-time prompt inversion method for semantic segmentation.
We introduce Contrastive Soft Clustering to align masks with the image's structure information.
InvSeg learns context-rich text prompts in embedding space and achieves accurate semantic alignment across modalities.
- Score: 33.60580908728705
- License:
- Abstract: Visual-textual correlations in the attention maps derived from text-to-image diffusion models are proven beneficial to dense visual prediction tasks, e.g., semantic segmentation. However, a significant challenge arises due to the input distributional discrepancy between the context-rich sentences used for image generation and the isolated class names typically employed in semantic segmentation, hindering the diffusion models from capturing accurate visual-textual correlations. To solve this, we propose InvSeg, a test-time prompt inversion method that tackles open-vocabulary semantic segmentation by inverting image-specific visual context into text prompt embedding space, leveraging structure information derived from the diffusion model's reconstruction process to enrich text prompts so as to associate each class with a structure-consistent mask. Specifically, we introduce Contrastive Soft Clustering (CSC) to align derived masks with the image's structure information, softly selecting anchors for each class and calculating weighted distances to push inner-class pixels closer while separating inter-class pixels, thereby ensuring mask distinction and internal consistency. By incorporating sample-specific context, InvSeg learns context-rich text prompts in embedding space and achieves accurate semantic alignment across modalities. Experiments show that InvSeg achieves state-of-the-art performance on the PASCAL VOC and Context datasets. Project page: https://jylin8100.github.io/InvSegProject/.
Related papers
- Scene Graph Generation with Role-Playing Large Language Models [50.252588437973245]
Current approaches for open-vocabulary scene graph generation (OVSGG) use vision-language models such as CLIP.
We propose SDSGG, a scene-specific description based OVSGG framework.
To capture the complicated interplay between subjects and objects, we propose a new lightweight module called mutual visual adapter.
arXiv Detail & Related papers (2024-10-20T11:40:31Z) - Leveraging Open-Vocabulary Diffusion to Camouflaged Instance
Segmentation [59.78520153338878]
Text-to-image diffusion techniques have shown exceptional capability of producing high-quality images from text descriptions.
We propose a method built upon a state-of-the-art diffusion model, empowered by open-vocabulary to learn multi-scale textual-visual features for camouflaged object representations.
arXiv Detail & Related papers (2023-12-29T07:59:07Z) - FuseNet: Self-Supervised Dual-Path Network for Medical Image
Segmentation [3.485615723221064]
FuseNet is a dual-stream framework for self-supervised semantic segmentation.
Cross-modal fusion technique extends the principles of CLIP by replacing textual data with augmented images.
experiments on skin lesion and lung segmentation datasets demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2023-11-22T00:03:16Z) - Zero-shot spatial layout conditioning for text-to-image diffusion models [52.24744018240424]
Large-scale text-to-image diffusion models have significantly improved the state of the art in generative image modelling.
We consider image generation from text associated with segments on the image canvas, which combines an intuitive natural language interface with precise spatial control over the generated content.
We propose ZestGuide, a zero-shot segmentation guidance approach that can be plugged into pre-trained text-to-image diffusion models.
arXiv Detail & Related papers (2023-06-23T19:24:48Z) - ViewCo: Discovering Text-Supervised Segmentation Masks via Multi-View
Semantic Consistency [126.88107868670767]
We propose multi-textbfView textbfConsistent learning (ViewCo) for text-supervised semantic segmentation.
We first propose text-to-views consistency modeling to learn correspondence for multiple views of the same input image.
We also propose cross-view segmentation consistency modeling to address the ambiguity issue of text supervision.
arXiv Detail & Related papers (2023-01-31T01:57:52Z) - Learning to Generate Text-grounded Mask for Open-world Semantic
Segmentation from Only Image-Text Pairs [10.484851004093919]
We tackle open-world semantic segmentation, which aims at learning to segment arbitrary visual concepts in images.
Existing open-world segmentation methods have shown impressive advances by employing contrastive learning (CL) to learn diverse visual concepts.
We propose a novel Text-grounded Contrastive Learning framework that enables a model to directly learn region-text alignment.
arXiv Detail & Related papers (2022-12-01T18:59:03Z) - Language-driven Semantic Segmentation [88.21498323896475]
We present LSeg, a novel model for language-driven semantic image segmentation.
We use a text encoder to compute embeddings of descriptive input labels.
The encoder is trained with a contrastive objective to align pixel embeddings to the text embedding of the corresponding semantic class.
arXiv Detail & Related papers (2022-01-10T18:59:10Z) - CRIS: CLIP-Driven Referring Image Segmentation [71.56466057776086]
We propose an end-to-end CLIP-Driven Referring Image framework (CRIS)
CRIS resorts to vision-language decoding and contrastive learning for achieving the text-to-pixel alignment.
Our proposed framework significantly outperforms the state-of-the-art performance without any post-processing.
arXiv Detail & Related papers (2021-11-30T07:29:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.