How Transformers Implement Induction Heads: Approximation and Optimization Analysis
- URL: http://arxiv.org/abs/2410.11474v2
- Date: Wed, 16 Oct 2024 04:04:06 GMT
- Title: How Transformers Implement Induction Heads: Approximation and Optimization Analysis
- Authors: Mingze Wang, Ruoxi Yu, Weinan E, Lei Wu,
- Abstract summary: We provide both approximation and optimization analyses of how transformers implement induction heads.
In the approximation analysis, we formalize both standard and generalized induction head mechanisms.
For the optimization analysis, we study the training dynamics on a synthetic mixed target, composed of a 4-gram and an in-context 2-gram component.
- Score: 11.789846138681359
- License:
- Abstract: Transformers have demonstrated exceptional in-context learning capabilities, yet the theoretical understanding of the underlying mechanisms remain limited. A recent work (Elhage et al., 2021) identified a "rich" in-context mechanism known as induction head, contrasting with "lazy" $n$-gram models that overlook long-range dependencies. In this work, we provide both approximation and optimization analyses of how transformers implement induction heads. In the approximation analysis, we formalize both standard and generalized induction head mechanisms, and examine how transformers can efficiently implement them, with an emphasis on the distinct role of each transformer submodule. For the optimization analysis, we study the training dynamics on a synthetic mixed target, composed of a 4-gram and an in-context 2-gram component. This setting enables us to precisely characterize the entire training process and uncover an {\em abrupt transition} from lazy (4-gram) to rich (induction head) mechanisms as training progresses.
Related papers
- Interpreting Affine Recurrence Learning in GPT-style Transformers [54.01174470722201]
In-context learning allows GPT-style transformers to generalize during inference without modifying their weights.
This paper focuses specifically on their ability to learn and predict affine recurrences as an ICL task.
We analyze the model's internal operations using both empirical and theoretical approaches.
arXiv Detail & Related papers (2024-10-22T21:30:01Z) - How Transformers Utilize Multi-Head Attention in In-Context Learning? A Case Study on Sparse Linear Regression [19.64743851296488]
In this study, we consider a sparse linear regression problem and investigate how a trained multi-head transformer performs in-context learning.
We experimentally discover that the utilization of multi-heads exhibits different patterns across layers.
We demonstrate that such a preprocess-then-optimize algorithm can significantly outperform naive gradient descent and ridge regression algorithms.
arXiv Detail & Related papers (2024-08-08T15:33:02Z) - Strengthening Structural Inductive Biases by Pre-training to Perform Syntactic Transformations [75.14793516745374]
We propose to strengthen the structural inductive bias of a Transformer by intermediate pre-training.
Our experiments confirm that this helps with few-shot learning of syntactic tasks such as chunking.
Our analysis shows that the intermediate pre-training leads to attention heads that keep track of which syntactic transformation needs to be applied to which token.
arXiv Detail & Related papers (2024-07-05T14:29:44Z) - A Mechanistic Analysis of a Transformer Trained on a Symbolic Multi-Step Reasoning Task [14.921790126851008]
We present a comprehensive mechanistic analysis of a transformer trained on a synthetic reasoning task.
We identify a set of interpretable mechanisms the model uses to solve the task, and validate our findings using correlational and causal evidence.
arXiv Detail & Related papers (2024-02-19T08:04:25Z) - Investigating Recurrent Transformers with Dynamic Halt [64.862738244735]
We study the inductive biases of two major approaches to augmenting Transformers with a recurrent mechanism.
We propose and investigate novel ways to extend and combine the methods.
arXiv Detail & Related papers (2024-02-01T19:47:31Z) - On the Convergence of Encoder-only Shallow Transformers [62.639819460956176]
We build the global convergence theory of encoder-only shallow Transformers under a realistic setting.
Our results can pave the way for a better understanding of modern Transformers, particularly on training dynamics.
arXiv Detail & Related papers (2023-11-02T20:03:05Z) - In-Context Convergence of Transformers [63.04956160537308]
We study the learning dynamics of a one-layer transformer with softmax attention trained via gradient descent.
For data with imbalanced features, we show that the learning dynamics take a stage-wise convergence process.
arXiv Detail & Related papers (2023-10-08T17:55:33Z) - Birth of a Transformer: A Memory Viewpoint [25.294093283819443]
Large language models based on transformers have achieved great empirical successes.
As they are deployed more widely, there is a growing need to better understand their internal mechanisms in order to make them more reliable.
We study how transformers balance these two types of distributions of knowledge by considering a synthetic setup where tokens are generated from either global or context-specific bigrams.
arXiv Detail & Related papers (2023-06-01T15:30:33Z) - Transformers learn in-context by gradient descent [58.24152335931036]
Training Transformers on auto-regressive objectives is closely related to gradient-based meta-learning formulations.
We show how trained Transformers become mesa-optimizers i.e. learn models by gradient descent in their forward pass.
arXiv Detail & Related papers (2022-12-15T09:21:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.