How Transformers Get Rich: Approximation and Dynamics Analysis
- URL: http://arxiv.org/abs/2410.11474v3
- Date: Wed, 29 Jan 2025 10:27:40 GMT
- Title: How Transformers Get Rich: Approximation and Dynamics Analysis
- Authors: Mingze Wang, Ruoxi Yu, Weinan E, Lei Wu,
- Abstract summary: We provide both approximation and dynamics analyses of how transformers implement induction heads.
In the em approximation analysis, we formalize both standard and generalized induction head mechanisms.
For the em dynamics analysis, we study the training dynamics on a synthetic mixed target, composed of a 4-gram and an in-context 2-gram component.
- Score: 11.789846138681359
- License:
- Abstract: Transformers have demonstrated exceptional in-context learning capabilities, yet the theoretical understanding of the underlying mechanisms remains limited. A recent work (Elhage et al., 2021) identified a ``rich'' in-context mechanism known as induction head, contrasting with ``lazy'' $n$-gram models that overlook long-range dependencies. In this work, we provide both approximation and dynamics analyses of how transformers implement induction heads. In the {\em approximation} analysis, we formalize both standard and generalized induction head mechanisms, and examine how transformers can efficiently implement them, with an emphasis on the distinct role of each transformer submodule. For the {\em dynamics} analysis, we study the training dynamics on a synthetic mixed target, composed of a 4-gram and an in-context 2-gram component. This controlled setting allows us to precisely characterize the entire training process and uncover an {\em abrupt transition} from lazy (4-gram) to rich (induction head) mechanisms as training progresses.
Related papers
- Enhancing Transformers for Generalizable First-Order Logical Entailment [51.04944136538266]
This paper investigates the generalizable first-order logical reasoning ability of transformers with their parameterized knowledge.
The first-order reasoning capability of transformers is assessed through their ability to perform first-order logical entailment.
We propose a more sophisticated, logic-aware architecture, TEGA, to enhance the capability for generalizable first-order logical entailment in transformers.
arXiv Detail & Related papers (2025-01-01T07:05:32Z) - Interpreting Affine Recurrence Learning in GPT-style Transformers [54.01174470722201]
In-context learning allows GPT-style transformers to generalize during inference without modifying their weights.
This paper focuses specifically on their ability to learn and predict affine recurrences as an ICL task.
We analyze the model's internal operations using both empirical and theoretical approaches.
arXiv Detail & Related papers (2024-10-22T21:30:01Z) - Strengthening Structural Inductive Biases by Pre-training to Perform Syntactic Transformations [75.14793516745374]
We propose to strengthen the structural inductive bias of a Transformer by intermediate pre-training.
Our experiments confirm that this helps with few-shot learning of syntactic tasks such as chunking.
Our analysis shows that the intermediate pre-training leads to attention heads that keep track of which syntactic transformation needs to be applied to which token.
arXiv Detail & Related papers (2024-07-05T14:29:44Z) - Clustering in pure-attention hardmax transformers and its role in sentiment analysis [0.0]
We rigorously characterize the behavior of transformers with hardmax self-attention and normalization sublayers as the number of layers tends to infinity.
We show that the transformer inputsally converge to a clustered equilibrium determined by special points called leaders.
We then leverage this theoretical understanding to solve sentiment analysis problems from language processing using a fully interpretable transformer model.
arXiv Detail & Related papers (2024-06-26T16:13:35Z) - Dynamical Mean-Field Theory of Self-Attention Neural Networks [0.0]
Transformer-based models have demonstrated exceptional performance across diverse domains.
Little is known about how they operate or what are their expected dynamics.
We use methods for the study of asymmetric Hopfield networks in nonequilibrium regimes.
arXiv Detail & Related papers (2024-06-11T13:29:34Z) - A Mechanistic Analysis of a Transformer Trained on a Symbolic Multi-Step Reasoning Task [14.921790126851008]
We present a comprehensive mechanistic analysis of a transformer trained on a synthetic reasoning task.
We identify a set of interpretable mechanisms the model uses to solve the task, and validate our findings using correlational and causal evidence.
arXiv Detail & Related papers (2024-02-19T08:04:25Z) - Investigating Recurrent Transformers with Dynamic Halt [64.862738244735]
We study the inductive biases of two major approaches to augmenting Transformers with a recurrent mechanism.
We propose and investigate novel ways to extend and combine the methods.
arXiv Detail & Related papers (2024-02-01T19:47:31Z) - In-Context Convergence of Transformers [63.04956160537308]
We study the learning dynamics of a one-layer transformer with softmax attention trained via gradient descent.
For data with imbalanced features, we show that the learning dynamics take a stage-wise convergence process.
arXiv Detail & Related papers (2023-10-08T17:55:33Z) - Transformers learn in-context by gradient descent [58.24152335931036]
Training Transformers on auto-regressive objectives is closely related to gradient-based meta-learning formulations.
We show how trained Transformers become mesa-optimizers i.e. learn models by gradient descent in their forward pass.
arXiv Detail & Related papers (2022-12-15T09:21:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.