Frequency shifts induced by light scalar fields
- URL: http://arxiv.org/abs/2410.11567v1
- Date: Tue, 15 Oct 2024 12:57:54 GMT
- Title: Frequency shifts induced by light scalar fields
- Authors: Christian Käding,
- Abstract summary: We consider a probe scalar particle as a rough approximation for an atom in matter wave interferometry.
We discuss the frequency shifts induced by interactions with an environment comprising either one of two screened scalar field models: chameleons or symmetrons.
For symmetrons, we find that induced frequency shifts have the potential to tightly constrain previously unreachable parts of the parameter space.
- Score: 0.8158530638728501
- License:
- Abstract: Light scalar fields are frequently used in modern physics, for example, as candidates for dark energy or dark matter. Open quantum dynamical effects, like frequency shifts, induced by such fields in probe particles used in interferometry experiments might open up new perspectives for constraining such models. In this article, we consider a probe scalar particle as a rough approximation for an atom in matter wave interferometry and discuss the frequency shifts induced by interactions with an environment comprising either one of two screened scalar field models: chameleons or symmetrons. For the $n=-4$ chameleon, we revise a previously obtained expression for the induced frequency shift, but confirm that it can likely not be used to obtain new constraints. However, for symmetrons, we find that induced frequency shifts have the potential to tightly constrain previously unreachable parts of the parameter space.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Detecting quantum vacuum fluctuations of the electromagnetic field [3.5507288996708097]
We estimate the magnitude of the frequency shift using parameters from a single-electron cyclotron experiment.
We suggest a possible route to detecting vacuum-generated quantum coherences.
arXiv Detail & Related papers (2024-04-16T10:48:12Z) - Finite Pulse-Time Effects in Long-Baseline Quantum Clock Interferometry [45.73541813564926]
We study the interplay of the quantum center-of-mass $-$ that can become delocalized $-$ together with the internal clock transitions.
We show at the example of a Gaussian laser beam that the proposed quantum-clock interferometers are stable against perturbations from varying optical fields.
arXiv Detail & Related papers (2023-09-25T18:00:03Z) - Cavity-induced switching between Bell-state textures in a quantum dot [0.0]
We show how a simple theoretical model of this interplay at resonance predicts complex but measurable effects.
New polariton states emerge that combine spin, relative modes, and radiation.
We uncover novel topological effects involving highly correlated spin and charge density.
arXiv Detail & Related papers (2023-08-17T01:31:36Z) - Dilaton-induced open quantum dynamics [0.0]
We study the open quantum dynamics of a probe modelled by another real scalar field.
As the leading effect, we extract a correction to the probe's unitary evolution.
We show that comparing the predicted frequency shifts in two experimentally distinct setups has the potential to exclude large parts of the dilaton parameter space.
arXiv Detail & Related papers (2023-06-19T12:49:59Z) - Quantum fluctuations in the small Fabry-Perot interferometer [77.34726150561087]
We study the small, of the size of the order of the wavelength, interferometer with the main mode excited by a quantum field from a nano-LED or a laser.
We find the field and the photon number fluctuation spectra inside and outside the interferometer.
Results help the study, design, manufacture, and use small elements of quantum optical integrated circuits.
arXiv Detail & Related papers (2022-12-27T10:02:25Z) - Frequency Spectra Analysis of Space and Time Averaged Quantum Stress
Tensor Fluctuations [6.876539868141691]
We build on prior results to characterize the particle frequencies associated with quantum fluctuations of different magnitudes.
Our findings provide a way identify the largest quantum fluctuation that may be probed in experiments relying on frequency-dependent interactions.
arXiv Detail & Related papers (2022-11-22T04:37:32Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Dipole-dipole frequency shifts in multilevel atoms [0.0]
Dipole-dipole interactions lead to frequency shifts that are expected to limit the performance of next-generation atomic clocks.
We compute dipolar frequency shifts accounting for the intrinsic atomic multilevel structure in standard Ramsey spectroscopy.
arXiv Detail & Related papers (2021-02-11T00:36:20Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z) - Multidimensional synthetic chiral-tube lattices via nonlinear frequency
conversion [57.860179997051915]
We propose and experimentally realize all-optical synthetic dimensions involving specially tailored simultaneous short- and long-range interactions.
We implement a synthetic gauge field with nonzero magnetic flux and observe the associated multidimensional dynamics of frequency combs.
arXiv Detail & Related papers (2020-02-20T07:08:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.