Towards a Healthy AI Tradition: Lessons from Biology and Biomedical Science
- URL: http://arxiv.org/abs/2410.11590v1
- Date: Tue, 15 Oct 2024 13:25:02 GMT
- Title: Towards a Healthy AI Tradition: Lessons from Biology and Biomedical Science
- Authors: Simon Kasif,
- Abstract summary: We suggest that contrasting the fast-moving AI culture to biological and biomedical sciences is both insightful and useful.
The co-evolution of AI and Biomedical Science offers many benefits to both fields.
This perspective focuses on the benefits to AI by adapting features of biomedical science at higher, primarily cultural levels.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: AI is a magnificent field that directly and profoundly touches on numerous disciplines ranging from philosophy, computer science, engineering, mathematics, decision and data science and economics, to cognitive science, neuroscience and more. The number of applications and impact of AI is second to none and the potential of AI to broadly impact future science developments is particularly thrilling. While attempts to understand knowledge, reasoning, cognition and learning go back centuries, AI remains a relatively new field. In part due to the fact it has so many wide-ranging overlaps with other disparate fields it appears to have trouble developing a robust identity and culture. Here we suggest that contrasting the fast-moving AI culture to biological and biomedical sciences is both insightful and useful way to inaugurate a healthy tradition needed to envision and manage our ascent to AGI and beyond (independent of the AI Platforms used). The co-evolution of AI and Biomedical Science offers many benefits to both fields. In a previous perspective, we suggested that biomedical laboratories or centers can usefully embrace logistic traditions in AI labs that will allow them to be highly collaborative, improve the reproducibility of research, reduce risk aversion and produce faster mentorship pathways for PhDs and fellows. This perspective focuses on the benefits to AI by adapting features of biomedical science at higher, primarily cultural levels.
Related papers
- Scaling Laws in Scientific Discovery with AI and Robot Scientists [72.3420699173245]
An autonomous generalist scientist (AGS) concept combines agentic AI and embodied robotics to automate the entire research lifecycle.
AGS aims to significantly reduce the time and resources needed for scientific discovery.
As these autonomous systems become increasingly integrated into the research process, we hypothesize that scientific discovery might adhere to new scaling laws.
arXiv Detail & Related papers (2025-03-28T14:00:27Z) - Human-AI Teaming Using Large Language Models: Boosting Brain-Computer Interfacing (BCI) and Brain Research [1.7265013728931]
We introduce the collaborative concept for human-AI teaming based on a set of Janusian design principles.
ChatBCI is a Python-based toolbox for enabling human-AI collaboration.
Our approach can be straightforwardly extended to broad neurotechnological and neuroscientific topics.
arXiv Detail & Related papers (2024-12-30T20:26:03Z) - Bridging AI and Science: Implications from a Large-Scale Literature Analysis of AI4Science [25.683422870223076]
We present a large-scale analysis of the AI4Science literature.
We quantitatively highlight key disparities between AI methods and scientific problems.
We explore the potential and challenges of facilitating collaboration between AI and scientific communities.
arXiv Detail & Related papers (2024-11-27T00:40:51Z) - The Dual Impact of Artificial Intelligence in Healthcare: Balancing Advancements with Ethical and Operational Challenges [1.3302498881305604]
This paper takes a close look at how AI is transforming areas such as diagnostics, precision medicine, and drug discovery.
Issues like patient privacy, safety, and the fairness of AI decisions are explored to understand whether AI in healthcare is a positive force, a potential risk, or perhaps both.
arXiv Detail & Related papers (2024-11-08T23:36:16Z) - Towards a Science Exocortex [0.5687661359570725]
We review the state of the art in agentic AI systems, and discuss how these methods could be extended to have greater impact on science.
A science exocortex could be designed as a swarm of AI agents, with each agent individually streamlining specific researcher tasks.
arXiv Detail & Related papers (2024-06-24T14:32:32Z) - AI for social science and social science of AI: A Survey [47.5235291525383]
Recent advancements in artificial intelligence have sparked a rethinking of artificial general intelligence possibilities.
The increasing human-like capabilities of AI are also attracting attention in social science research.
arXiv Detail & Related papers (2024-01-22T10:57:09Z) - Drivers and Barriers of AI Adoption and Use in Scientific Research [0.0]
We study the integration of AI in scientific research, focusing on the human capital of scientists and the external resources available within their network of collaborators and institutions.
Our results suggest that AI is pioneered by domain scientists with a taste for exploration' and who are embedded in a network rich of computer scientists, experienced AI scientists and early-career researchers.
arXiv Detail & Related papers (2023-12-15T14:49:13Z) - AI for Mathematics: A Cognitive Science Perspective [86.02346372284292]
Mathematics is one of the most powerful conceptual systems developed and used by the human species.
Rapid progress in AI, particularly propelled by advances in large language models (LLMs), has sparked renewed, widespread interest in building such systems.
arXiv Detail & Related papers (2023-10-19T02:00:31Z) - Advancing Perception in Artificial Intelligence through Principles of
Cognitive Science [6.637438611344584]
We focus on the cognitive functions of perception, which is the process of taking signals from one's surroundings as input, and processing them to understand the environment.
We present a collection of methods in AI for researchers to build AI systems inspired by cognitive science.
arXiv Detail & Related papers (2023-10-13T01:21:55Z) - Artificial Intelligence for Science in Quantum, Atomistic, and Continuum Systems [268.585904751315]
New area of research known as AI for science (AI4Science)
Areas aim at understanding the physical world from subatomic (wavefunctions and electron density), atomic (molecules, proteins, materials, and interactions), to macro (fluids, climate, and subsurface) scales.
Key common challenge is how to capture physics first principles, especially symmetries, in natural systems by deep learning methods.
arXiv Detail & Related papers (2023-07-17T12:14:14Z) - Artificial intelligence adoption in the physical sciences, natural
sciences, life sciences, social sciences and the arts and humanities: A
bibliometric analysis of research publications from 1960-2021 [73.06361680847708]
In 1960 14% of 333 research fields were related to AI, but this increased to over half of all research fields by 1972, over 80% by 1986 and over 98% in current times.
In 1960 14% of 333 research fields were related to AI (many in computer science), but this increased to over half of all research fields by 1972, over 80% by 1986 and over 98% in current times.
We conclude that the context of the current surge appears different, and that interdisciplinary AI application is likely to be sustained.
arXiv Detail & Related papers (2023-06-15T14:08:07Z) - Quantifying the Benefit of Artificial Intelligence for Scientific Research [2.4700789675440524]
We estimate both the direct use of AI and the potential benefit of AI in scientific research.
We find that the use of AI in research is widespread throughout the sciences, growing especially rapidly since 2015.
Our analysis reveals considerable potential for AI to benefit numerous scientific fields, yet a notable disconnect exists between AI education and its research applications.
arXiv Detail & Related papers (2023-04-17T08:08:50Z) - Integrating Artificial Intelligence and Humanities in Healthcare [0.0]
Artificial Intelligence (AI) and Medical Humanities have become two of the most crucial and rapidly growing fields in the current world.
AI has made substantial advancements in recent years, enabling the development of algorithms and systems that can perform tasks traditionally done by humans.
Medical Humanities, on the other hand, is the intersection of medical sciences, humanities, and the social sciences, and deals with the cultural, historical, philosophical, ethical, and social aspects of health, illness, and medicine.
arXiv Detail & Related papers (2023-02-13T10:48:48Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - The Short Anthropological Guide to the Study of Ethical AI [91.3755431537592]
Short guide serves as both an introduction to AI ethics and social science and anthropological perspectives on the development of AI.
Aims to provide those unfamiliar with the field with an insight into the societal impact of AI systems and how, in turn, these systems can lead us to rethink how our world operates.
arXiv Detail & Related papers (2020-10-07T12:25:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.