論文の概要: Feature-guided score diffusion for sampling conditional densities
- arxiv url: http://arxiv.org/abs/2410.11646v1
- Date: Tue, 15 Oct 2024 14:33:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 14:02:08.605318
- Title: Feature-guided score diffusion for sampling conditional densities
- Title(参考訳): サンプリング条件密度のための特徴誘導スコア拡散
- Authors: Zahra Kadkhodaie, Stéphane Mallat, Eero P. Simoncelli,
- Abstract要約: 投影されたスコアで拡散を誘導するアルゴリズムを導入する。
投影されたスコアと特徴ベクトルは同じネットワークで学習される。
このアルゴリズムは条件付けクラスから高品質で多様なサンプルを生成することができることを示す。
- 参考スコア(独自算出の注目度): 18.855392106470482
- License:
- Abstract: Score diffusion methods can learn probability densities from samples. The score of the noise-corrupted density is estimated using a deep neural network, which is then used to iteratively transport a Gaussian white noise density to a target density. Variants for conditional densities have been developed, but correct estimation of the corresponding scores is difficult. We avoid these difficulties by introducing an algorithm that guides the diffusion with a projected score. The projection pushes the image feature vector towards the feature vector centroid of the target class. The projected score and the feature vectors are learned by the same network. Specifically, the image feature vector is defined as the spatial averages of the channels activations in select layers of the network. Optimizing the projected score for denoising loss encourages image feature vectors of each class to cluster around their centroids. It also leads to the separations of the centroids. We show that these centroids provide a low-dimensional Euclidean embedding of the class conditional densities. We demonstrate that the algorithm can generate high quality and diverse samples from the conditioning class. Conditional generation can be performed using feature vectors interpolated between those of the training set, demonstrating out-of-distribution generalization.
- Abstract(参考訳): スコア拡散法はサンプルから確率密度を学習することができる。
ノイズ崩壊密度のスコアは、ディープニューラルネットワークを用いて推定され、ガウスホワイトノイズ密度を目標密度に反復的に輸送するために使用される。
条件密度の変数が開発されたが、対応するスコアの正確な推定は困難である。
我々は、予測されたスコアで拡散を導くアルゴリズムを導入することで、これらの困難を避ける。
プロジェクションは、画像特徴ベクトルをターゲットクラスの特徴ベクトルセントロイドにプッシュする。
投影されたスコアと特徴ベクトルは同じネットワークで学習される。
具体的には、画像特徴ベクトルを、ネットワークの選択層におけるチャネルアクティベーションの空間平均として定義する。
損失を減じるために投影されたスコアを最適化することで、各クラスのイメージ特徴ベクトルがセントロイドを囲むように促される。
また、センチロイドの分離にも繋がる。
これらの遠心波は、クラス条件密度の低次元ユークリッド埋め込みを提供することを示す。
このアルゴリズムは条件付けクラスから高品質で多様なサンプルを生成できることを実証する。
条件生成はトレーニングセット間で補間された特徴ベクトルを用いて行うことができ、アウト・オブ・ディストリビューションの一般化を示す。
関連論文リスト
- Towards the Uncharted: Density-Descending Feature Perturbation for Semi-supervised Semantic Segmentation [51.66997548477913]
本稿では,DDFP(Dedentity-Descending Feature Perturbation)という特徴レベルの一貫性学習フレームワークを提案する。
半教師付き学習における低密度分離仮定にインスパイアされた私たちの重要な洞察は、特徴密度はセグメンテーション分類器が探索する最も有望な方向の光を放つことができるということである。
提案したDFFPは、機能レベルの摂動に関する他の設計よりも優れており、Pascal VOCとCityscapesのデータセット上でのアートパフォーマンスの状態を示している。
論文 参考訳(メタデータ) (2024-03-11T06:59:05Z) - Feature Selection using Sparse Adaptive Bottleneck Centroid-Encoder [1.2487990897680423]
2つ以上のクラスで識別される特徴を決定するために,新しい非線形モデル SABCE (Sparse Adaptive Bottleneckid-Encoder) を導入する。
このアルゴリズムは、高次元生物学的、画像、音声、加速度センサデータなど、様々な実世界のデータセットに適用される。
論文 参考訳(メタデータ) (2023-06-07T21:37:21Z) - A Dynamical Systems Algorithm for Clustering in Hyperspectral Imagery [0.18374319565577152]
ハイパースペクトル画像におけるクラスタリングのための新しい動的システムアルゴリズムを提案する。
このアルゴリズムの主な考え方は、密度を増加させる方向に「データポイントが押される」ことであり、同じ密度の領域に終わるピクセル群は同じクラスに属する。
本手法は, 既定素材のクラスを基礎事実として, k-means アルゴリズムと性能を比較した都市景観におけるアルゴリズムの評価を行う。
論文 参考訳(メタデータ) (2022-07-21T17:31:57Z) - Rethinking Spatial Invariance of Convolutional Networks for Object
Counting [119.83017534355842]
局所連結ガウス核を用いて元の畳み込みフィルタを置き換え、密度写像の空間位置を推定する。
従来の研究から着想を得て,大規模なガウス畳み込みの近似を好意的に実装するために,翻訳不変性を伴う低ランク近似を提案する。
提案手法は,他の最先端手法を著しく上回り,物体の空間的位置の有望な学習を実現する。
論文 参考訳(メタデータ) (2022-06-10T17:51:25Z) - Dencentralized learning in the presence of low-rank noise [57.18977364494388]
ネットワーク内のエージェントが収集した観測は、観測ノイズや干渉のために信頼性が低い。
本稿では,各ノードが自身の観測の信頼性を向上させる分散アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-03-18T09:13:57Z) - Density-Based Clustering with Kernel Diffusion [59.4179549482505]
単位$d$次元ユークリッド球のインジケータ関数に対応するナイーブ密度は、密度に基づくクラスタリングアルゴリズムで一般的に使用される。
局所分布特性と滑らかさの異なるデータに適応する新しいカーネル拡散密度関数を提案する。
論文 参考訳(メタデータ) (2021-10-11T09:00:33Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
我々は、アウト・オブ・ディストリビューション(OOD)インプットと敵攻撃(AA)を検出する新しい手法であるDAINを導入する。
本手法は,ニューラルネットワークの内部動作を監視し,活性化分布の密度推定器を学習する。
当社のモデルは,特別なアクセラレータを必要とせずに,効率的な計算とデプロイが可能な単一のGPUでトレーニングすることが可能です。
論文 参考訳(メタデータ) (2021-05-30T22:07:13Z) - Multi-Class Data Description for Out-of-distribution Detection [25.853322158250435]
Deep-MCDDは、分布外(OOD)サンプルを検出するだけでなく、分布内(ID)サンプルを分類するのに効果的です。
ガウス微分分析の概念をディープニューラルネットワークに統合することにより,クラス条件分布を学習する深層学習目標を提案する。
論文 参考訳(メタデータ) (2021-04-02T08:41:51Z) - Embedding Propagation: Smoother Manifold for Few-Shot Classification [131.81692677836202]
本稿では, 組込み伝搬を非教師なし非パラメトリック正規化器として, 数ショット分類における多様体平滑化に用いることを提案する。
埋め込み伝播がより滑らかな埋め込み多様体を生み出すことを実証的に示す。
複数の半教師付き学習シナリオにおいて,埋め込み伝搬によりモデルの精度が最大16%向上することを示す。
論文 参考訳(メタデータ) (2020-03-09T13:51:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。