Advancing Towards a Marine Digital Twin Platform: Modeling the Mar Menor Coastal Lagoon Ecosystem in the South Western Mediterranean
- URL: http://arxiv.org/abs/2409.10134v1
- Date: Mon, 16 Sep 2024 10:01:18 GMT
- Title: Advancing Towards a Marine Digital Twin Platform: Modeling the Mar Menor Coastal Lagoon Ecosystem in the South Western Mediterranean
- Authors: Yu Ye, Aurora González-Vidal, Alejandro Cisterna-García, Angel Pérez-Ruzafa, Miguel A. Zamora Izquierdo, Antonio F. Skarmeta,
- Abstract summary: Coastal marine ecosystems face mounting pressures from anthropogenic activities and climate change.
This paper pioneers the development of a Marine Digital Twin Platform aimed at modeling the Mar Menor Coastal Lagoon Ecosystem in the Region of Murcia.
- Score: 39.58165317223655
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Coastal marine ecosystems face mounting pressures from anthropogenic activities and climate change, necessitating advanced monitoring and modeling approaches for effective management. This paper pioneers the development of a Marine Digital Twin Platform aimed at modeling the Mar Menor Coastal Lagoon Ecosystem in the Region of Murcia. The platform leverages Artificial Intelligence to emulate complex hydrological and ecological models, facilitating the simulation of what-if scenarios to predict ecosystem responses to various stressors. We integrate diverse datasets from public sources to construct a comprehensive digital representation of the lagoon's dynamics. The platform's modular design enables real-time stakeholder engagement and informed decision-making in marine management. Our work contributes to the ongoing discourse on advancing marine science through innovative digital twin technologies.
Related papers
- Regional Ocean Forecasting with Hierarchical Graph Neural Networks [1.4146420810689422]
We introduce SeaCast, a neural network designed for high-resolution, medium-range ocean forecasting.
SeaCast employs a graph-based framework to handle the complex geometry of ocean grids and integrates external forcing data tailored to the regional ocean context.
Our approach is validated through experiments at a high spatial resolution using the operational numerical model of the Mediterranean Sea provided by the Copernicus Marine Service.
arXiv Detail & Related papers (2024-10-15T17:34:50Z) - Coupled Ocean-Atmosphere Dynamics in a Machine Learning Earth System Model [0.6008008212472723]
We present the Ocean-linked-atmosphere (Ola) model, a high-resolution (0.25deg) Artificial Intelligence/ Machine Learning (AI/ML) coupled earth-system model.
We find that Ola exhibits learned characteristics of ocean-atmosphere coupled dynamics including tropical oceanic waves with appropriate phase speeds.
We present initial evidence of skill in forecasting the El Nino/Southern Oscillation (ENSO) which compares favorably to the SPEAR model of the Geophysical Fluid Dynamics Laboratory.
arXiv Detail & Related papers (2024-06-12T20:29:14Z) - Is Sora a World Simulator? A Comprehensive Survey on General World Models and Beyond [101.15395503285804]
General world models represent a crucial pathway toward achieving Artificial General Intelligence (AGI)
In this survey, we embark on a comprehensive exploration of the latest advancements in world models.
We examine challenges and limitations of world models, and discuss their potential future directions.
arXiv Detail & Related papers (2024-05-06T14:37:07Z) - BenthIQ: a Transformer-Based Benthic Classification Model for Coral
Restoration [4.931399476945033]
Coral reefs are vital for marine biodiversity, coastal protection, and supporting human livelihoods globally.
Current methods for creating benthic composition maps often compromise between spatial coverage and resolution.
We introduce BenthIQ, a multi-label semantic segmentation network designed for high-precision classification of underwater substrates.
arXiv Detail & Related papers (2023-11-22T19:25:31Z) - AI-GOMS: Large AI-Driven Global Ocean Modeling System [3.635120568177384]
Ocean modeling is a powerful tool for simulating the physical, chemical, and biological processes of the ocean.
Here, we present AI-GOMS, a large AI-driven global ocean modeling system, for accurate and efficient global ocean daily prediction.
arXiv Detail & Related papers (2023-08-06T15:59:30Z) - FisHook -- An Optimized Approach to Marine Specie Classification using
MobileNetV2 [5.565562836494568]
classification and monitoring of marine species can aid in understanding their distribution, population dynamics, and the impact of human activities on them.
Deep-learning algorithms can now efficiently classify marine species, making it easier to monitor and manage marine ecosystems.
arXiv Detail & Related papers (2023-04-04T04:30:25Z) - Real-time high-resolution CO$_2$ geological storage prediction using
nested Fourier neural operators [58.728312684306545]
Carbon capture and storage (CCS) plays an essential role in global decarbonization.
Scaling up CCS deployment requires accurate and high-resolution modeling of the storage reservoir pressure buildup and the gaseous plume migration.
We introduce Nested Fourier Neural Operator (FNO), a machine-learning framework for high-resolution dynamic 3D CO2 storage modeling at a basin scale.
arXiv Detail & Related papers (2022-10-31T04:04:03Z) - Toward Foundation Models for Earth Monitoring: Proposal for a Climate
Change Benchmark [95.19070157520633]
Recent progress in self-supervision shows that pre-training large neural networks on vast amounts of unsupervised data can lead to impressive increases in generalisation for downstream tasks.
Such models, recently coined as foundation models, have been transformational to the field of natural language processing.
We propose to develop a new benchmark comprised of a variety of downstream tasks related to climate change.
arXiv Detail & Related papers (2021-12-01T15:38:19Z) - SALT: Sea lice Adaptive Lattice Tracking -- An Unsupervised Approach to
Generate an Improved Ocean Model [72.3183990520267]
We propose SALT: Sea lice Adaptive Lattice Tracking approach for efficient estimation of sea lice dispersion and distribution.
Specifically, an adaptive spatial mesh is generated by merging nodes in the lattice graph of the Ocean Model based on local ocean properties.
The proposed SALT technique shows promise for enhancing proactive aquaculture management through predictive modelling of sea lice infestation pressure maps in a changing climate.
arXiv Detail & Related papers (2021-06-24T17:29:42Z) - Dynamical Landscape and Multistability of a Climate Model [64.467612647225]
We find a third intermediate stable state in one of the two climate models we consider.
The combination of our approaches allows to identify how the negative feedback of ocean heat transport and entropy production drastically change the topography of Earth's climate.
arXiv Detail & Related papers (2020-10-20T15:31:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.