論文の概要: Jigsaw++: Imagining Complete Shape Priors for Object Reassembly
- arxiv url: http://arxiv.org/abs/2410.11816v1
- Date: Tue, 15 Oct 2024 17:45:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 14:02:03.221075
- Title: Jigsaw++: Imagining Complete Shape Priors for Object Reassembly
- Title(参考訳): Jigsaw++: 完全な形がオブジェクトの再組み立てに先立つことを想像する
- Authors: Jiaxin Lu, Gang Hua, Qixing Huang,
- Abstract要約: Jigsaw++は、再アセンブリ問題に対する再構築の多面的課題に取り組むために設計された、新しい生成方法である。
完全なオブジェクトの前にカテゴリに依存しない形状を学ぶことで、自分自身を区別する。
J Jigsaw++は、その効果を示し、再構築エラーを低減し、形状復元の精度を高める。
- 参考スコア(独自算出の注目度): 35.16793557538698
- License:
- Abstract: The automatic assembly problem has attracted increasing interest due to its complex challenges that involve 3D representation. This paper introduces Jigsaw++, a novel generative method designed to tackle the multifaceted challenges of reconstruction for the reassembly problem. Existing approach focusing primarily on piecewise information for both part and fracture assembly, often overlooking the integration of complete object prior. Jigsaw++ distinguishes itself by learning a category-agnostic shape prior of complete objects. It employs the proposed "retargeting" strategy that effectively leverages the output of any existing assembly method to generate complete shape reconstructions. This capability allows it to function orthogonally to the current methods. Through extensive evaluations on Breaking Bad dataset and PartNet, Jigsaw++ has demonstrated its effectiveness, reducing reconstruction errors and enhancing the precision of shape reconstruction, which sets a new direction for future reassembly model developments.
- Abstract(参考訳): 自動組立問題は、3D表現にまつわる複雑な課題により、関心が高まりつつある。
本稿では,再集合問題に対する再構成の多面的課題に対処する新しい生成手法であるJigsaw++を紹介する。
既存のアプローチは、主に部分的情報と破折的情報の両方に焦点を当てており、多くの場合、前の完全なオブジェクトの統合を見落としている。
Jigsaw++は、完全なオブジェクトの前にカテゴリに依存しない形を学ぶことで、自分自身を区別する。
既存の組立手法の出力を効果的に活用し、完全な形状復元を生成する「再ターゲティング」戦略が提案されている。
この機能は現在のメソッドと直交的に機能することができる。
Breaking BadデータセットとPartNetに関する広範な評価を通じて、Jigsaw++は、その効果を実証し、再構築エラーを低減し、形状復元の精度を向上した。
関連論文リスト
- Part123: Part-aware 3D Reconstruction from a Single-view Image [54.589723979757515]
Part123は、一視点画像から部分認識された3D再構成のための新しいフレームワークである。
ニューラルレンダリングフレームワークにコントラスト学習を導入し、部分認識機能空間を学習する。
クラスタリングに基づくアルゴリズムも開発され、再構成されたモデルから3次元部分分割結果を自動的に導出する。
論文 参考訳(メタデータ) (2024-05-27T07:10:21Z) - A Fusion of Variational Distribution Priors and Saliency Map Replay for
Continual 3D Reconstruction [1.3812010983144802]
単一画像からの3次元物体形状の予測に焦点をあてた研究課題である。
このタスクは、形状の可視部分と隠蔽部分の両方を予測するために、重要なデータ取得を必要とする。
本稿では,従来のクラスを新しいクラスで学習した後でも合理的に再構築できる変分優先を用いたモデルの設計を目標とする,連続的な学習に基づく3D再構成手法を提案する。
論文 参考訳(メタデータ) (2023-08-17T06:48:55Z) - Attention-based Part Assembly for 3D Volumetric Shape Modeling [0.0]
本稿では、注意に基づく部分集合のためのVoxAttention Networkアーキテクチャを提案する。
実験結果から,本手法は部分関係を考慮した3次元形状モデリングタスクにおいて,最先端の手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-04-17T16:53:27Z) - Reconstructing Hand-Held Objects from Monocular Video [95.06750686508315]
本稿では,モノクロ映像から手持ち物体を再構成する手法を提案する。
トレーニングされたネットワークによってオブジェクトの幾何学を直接予測する最近の多くの手法とは対照的に、提案手法ではオブジェクトに先行する学習を一切必要としない。
論文 参考訳(メタデータ) (2022-11-30T09:14:58Z) - Single-view 3D Mesh Reconstruction for Seen and Unseen Categories [69.29406107513621]
シングルビュー3Dメッシュ再構成は、シングルビューRGB画像から3D形状を復元することを目的とした、基本的なコンピュータビジョンタスクである。
本稿では,一視点3Dメッシュ再構成に取り組み,未知のカテゴリのモデル一般化について検討する。
我々は、再構築におけるカテゴリ境界を断ち切るために、エンドツーエンドの2段階ネットワークであるGenMeshを提案する。
論文 参考訳(メタデータ) (2022-08-04T14:13:35Z) - 3D Part Assembly Generation with Instance Encoded Transformer [22.330218525999857]
本稿では,部品間の幾何的および関係的な推論を伴い,部品の更新を反復的に行う多層トランスフォーマーベースのフレームワークを提案する。
フレームワークをプロセス内部分アセンブリと呼ばれる新しいタスクに拡張します。
提案手法は、パブリックなPartNetデータセット上の複数のメトリクスにおいて、現在の最先端よりも10%以上改善されている。
論文 参考訳(メタデータ) (2022-07-05T02:40:57Z) - LegoFormer: Transformers for Block-by-Block Multi-view 3D Reconstruction [45.16128577837725]
現代のディープラーニングベースの多視点3D再構成技術のほとんどは、RNNまたは融合モジュールを使用して、エンコード後の複数の画像からの情報を組み合わせている。
我々は, 1 つのフレームワークでオブジェクト再構成を統一し, その分解因子によって再構成された占有グリッドをパラメータ化する, トランスフォーマーベースのモデルである LegoFormer を提案する。
論文 参考訳(メタデータ) (2021-06-23T00:15:08Z) - Unsupervised Learning of 3D Object Categories from Videos in the Wild [75.09720013151247]
オブジェクトインスタンスの大規模なコレクションの複数のビューからモデルを学ぶことに重点を置いています。
再構成を大幅に改善するワープコンディショニングレイ埋め込み(WCR)と呼ばれる新しいニューラルネットワーク設計を提案する。
本評価は,既存のベンチマークを用いた複数の深部単眼再構成ベースラインに対する性能改善を示す。
論文 参考訳(メタデータ) (2021-03-30T17:57:01Z) - Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from
a Single RGB Image [102.44347847154867]
プリミティブの集合として3次元オブジェクトの幾何を共同で復元できる新しい定式化を提案する。
我々のモデルは、プリミティブのバイナリツリーの形で、様々なオブジェクトの高レベルな構造的分解を復元する。
ShapeNet と D-FAUST のデータセットを用いた実験により,部品の組織化を考慮すれば3次元形状の推論が容易になることが示された。
論文 参考訳(メタデータ) (2020-04-02T17:58:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。